
Practical Semantic Web and
Linked Data Applications

Common Lisp Edition

Uses the Free Editions of Franz Common Lisp and AllegroGraph

Mark Watson

Copyright 2010 Mark Watson. All rights reserved.
This work is licensed under a Creative Commons
Attribution-Noncommercial-No Derivative Works

Version 3.0 United States License.

November 3, 2010

Contents

Preface xi
1. Getting started . xi
2. Portable Common Lisp Code Book Examples xii
3. Using the Common Lisp ASDF Package Manager xii
4. Information on the Companion Edition to this Book that Covers Java

and JVM Languages . xiii
5. AllegroGraph . xiii
6. Software License for Example Code in this Book xiv

1. Introduction 1
1.1. Who is this Book Written For? . 1
1.2. Why a PDF Copy of this Book is Available Free on the Web 3
1.3. Book Software . 3
1.4. Why Graph Data Representations are Better than the Relational Database

Model for Dealing with Rapidly Changing Data Requirements 4
1.5. What if You Use Other Programming Languages Other Than Lisp? . . 4

2. AllegroGraph Embedded Lisp Quick Start 7
2.1. Starting AllegroGraph . 7
2.2. Working with RDF Data Stores . 8

2.2.1. Creating Repositories . 9
2.2.2. AllegroGraph Lisp Reader Support for RDF 10
2.2.3. Adding Triples . 10
2.2.4. Fetching Triples by ID . 11
2.2.5. Printing Triples . 11
2.2.6. Using Cursors to Iterate Through Query Results 13
2.2.7. Saving Triple Stores to Disk as XML, N-Triples, and N3 . . . 14

2.3. AllegroGraph’s Extensions to RDF 14
2.3.1. Examples Using Triple and Graph IDs 15
2.3.2. Support for Geo Location 16
2.3.3. Support for Free Text Indexing 19
2.3.4. Comparing AllegroGraph With Other Semantic Web Frame-

works . 20
2.4. AllegroGraph Quickstart Wrap Up 21

iii

Contents

I. Semantic Web Technologies 23

3. RDF 25
3.1. RDF Examples in N-Triple and N3 Formats 27
3.2. The RDF Namespace . 30

3.2.1. rdf:type . 30
3.2.2. rdf:Property . 31

3.3. Dereferenceable URIs . 31
3.4. RDF Wrap Up . 32

4. RDFS 33
4.1. Extending RDF with RDF Schema 33
4.2. Modeling with RDFS . 34
4.3. AllegroGraph RDFS++ Extensions 36

4.3.1. owl:sameAs . 37
4.3.2. owl:inverseOf . 37
4.3.3. owl:TransitiveProperty . 38

4.4. RDFS Wrapup . 38

5. The SPARQL Query Language 41
5.1. Example RDF Data in N3 Format 41
5.2. Example SPARQL SELECT Queries 44
5.3. Example SPARQL CONSTRUCT Queries 46
5.4. Example SPARQL ASK Queries . 46
5.5. Example SPARQL DESCRIBE Queries 46
5.6. Wrapup . 47

6. RDFS++ and OWL 49
6.1. Properties Supported In RDFS++ . 49

6.1.1. owl:sameAs . 50
6.1.2. owl:inverseOf . 50
6.1.3. owl:TransitiveProperty . 51

6.2. RDF, RDFS, and RDFS++ Modeling Wrap Up 51

II. AllegroGraph Extended Tutorial 53

7. SPARQL Queries Using AllegroGraph APIs 55
7.1. Using Namespaces . 55
7.2. Reading RDF Data From Files . 56
7.3. Lisp APIs for Queires . 56
7.4. Wrap Up . 58

8. AllegroGraph Reasoning System 59
8.1. Enabling RDFS++ Reasoning on a Triple Store 59

iv

Contents

8.2. Inferring New Triples: rdf:type vs. rdfs:subClassOf Example 60
8.3. Using Inverse Properties . 61
8.4. Using the Same As Property . 63
8.5. Using the Transitive Property . 63
8.6. Wrap Up . 65

9. AllegroGraph Prolog Interface 67

III. Portable Common Lisp Utilities for Information Pro-
cessing 71

10.Linked Data and the World Wide Web 73
10.1. Linked Data Resources on the Web 74
10.2. Publishing Linked Data . 74
10.3. Will Linked Data Become the Semantic Web? 75
10.4. Linked Data Wrapup . 75

11.Common Lisp Client Library for Open Calais 77
11.1. Open Calais Web Services Client . 77
11.2. Storing Entity Data in an RDF Data Store 80
11.3. Testing the Open Calais Demo System 81
11.4. Open Calais Wrap Up . 82

12.Common Lisp Client Library for Natural Language Processing 85
12.1. KnowledgeBooks.com Natural Language Processing Library 85
12.2. KnowledgeBooks Natural Language Processing Library Wrapup . . . 87

13.Common Lisp Client Library for Freebase 89
13.1. Overview of Freebase . 89
13.2. Accessing Freebase from Common Lisp 91
13.3. Freebase Wrapup . 93

14.Common Lisp Client Library for DBpedia 95
14.1. Interactively Querying DBpedia Using the Snorql Web Interface . . . 95
14.2. Interactively Finding Useful DBpedia Resources Using the gFacet

Browser . 97
14.3. The lookup.dbpedia.org Web Service 97
14.4. Using the AllegroGraph SPARQL Client Library to access DBpedia . 99
14.5. DBpedia Wrapup . 100

15.Library for GeoNames 101
15.1. Using the cl-geonames Library . 101
15.2. Geonames Wrapup . 103

v

Contents

IV. Example Semantic Web Application 105

16.Semantic Web Portal Back End Services 107
16.1. Implementing the Back End APIs 108
16.2. Unit Testing the Backend Code . 110
16.3. Backend Wrapup . 112

17.Semantic Web Portal User Interface 113
17.1. Portable AllegroServe . 113
17.2. Layout of CLP files for Web Application 113
17.3. Common Lisp Code for Web Application 114
17.4. Web Application Wrap Up . 118

vi

List of Figures

1.1. Example Semantic Web Application 2

14.1. DBpedia Snorql Web Interface . 96
14.2. DBpedia Graph Facet Viewer . 98
14.3. DBpedia Graph Facet Viewer after selecting a resource 98

17.1. Example Semantic Web Application Login Page 114
17.2. Example File Upload Page . 116
17.3. Example Application Search Page 118

vii

List of Tables

13.1. Subset of Freebase API Arguments 90

ix

Preface

This book is primarily intended to be a practical guide for using RDF data in infor-
mation processing, linked data, and semantic web applications using the Common
Lisp APIs for the AllegroGraph product. A second use for this book is to help you,
the reader, set up an interactive Lisp development environment for writing knowledge
intensive applications. So, while the Semantic Web applications using the Allegro-
Graph RDF data store is the main theme in this book, I will also cover using data
from a variety of sources like Freebase, DBpedia and other public RDF repositories,
use of statistical Natural Language Processing (NLP), and the GeoNames database
and public web service.1

1. Getting started

I expect you to install the Franz Free Edition Common Lisp environment with the
Free Edition of AllegroGraph to work through the examples in this book. If you own
professional or enterprise licenses for these projects you can use that also. The free
editions have restrictions on their use so read the license agreement.

Download the Free Lisp Edition and then install AllegroGraph using:

(require :update)
(system.update:install-allegrograph)

Whenever you start Lisp using evaluate the following form to load AllegroGraph:

(require :agraph)

I do not duplicate information in this book that appears in the documentation available
on the Franz web site. I urge you to read how to set up an Emacs development
environment.

1The geonames.org web service is limited to 2000 queries per hour from any single IP address. Commer-
cial support is available, or, with some effort, you can also run GeoNames on your own server.

xi

Preface

2. Portable Common Lisp Code Book Examples

Even though many examples in this book use AllegroGraph I also provide many
portable Common Lisp examples and utilities that I have written for my own work
and research:

1. KnowledgeBooks.com Lisp Natural Language Processing (NLP) library

2. Client library for using the Open Calais web service23

3. Example code for using the Freebase web service4

4. Example code for using DBpedia web services5

5. Example code for using GeoBase.org web services6

3. Using the Common Lisp ASDF Package
Manager

There are several package managers available for Common Lisp and I have chosen
to use ASDF for the examples in this book that are not self contained in a single
source directory. ASDF uses a search path list as a source of directories to find
package definition files (that end with the extension .asd). For instance, since some
of the examples in this book will need to make web service calls I have an example
directory aserve client to show you how to use Franz’s open source aserve client
library. The example code needs to use the Yason JSON parsing and generation
library in utils/yson:

(push "../utils/yason/" asdf:*central-registry*)
(asdf:operate ’asdf:load-op ’yason)

The first statement pushes the Yson package directory on the ASDF search path list
and the second line loads the package named yson.

2Requires the open source Portable AllegroServe and split-sequence libraries.
3The example program that puts entities found in text into an RDF data store requires the AllegroGraph

library.
4Requires the Franz Portable AllegroServe client library. This is open source, but you will need to

manually install Portable AllegroServe if you are using an alternative Common Lisp implementation
(e.g., SBCL or Clozure Common Lisp).

5Requires the AllegroGraph SPARQL client APIs but this code could be rewritten.
6Requires several open source libraries that are included in the ZIP file for this book’s examples: cl-json,

s-xml, split-sequence, usocket, trivial-gray-streams, flexi-streams, chunga, cl-base64, puri, drakma,
and cl-geonames.

xii

4. Information on the Companion Edition to this Book that Covers Java and JVM Languages

When you browse through the directories containing the examples in this book you
will notice that I use the convention of placing short snippets of test code that I often
include in the book text in files named test.lisp and put longer examples in files named
example.lisp.

This book is organized in layers:

1. Quick introduction to the AllegroGraph and Franz Lisp.

2. Theory (with some AllegroGraph-specific short examples).

3. Detailed treatment of AllegroGraph APIs.

4. Development of Useful Common Lisp libraries information processing, and
importing linked data sources like Freebase and Open Calais data to an Alle-
groGraph RDF store.

5. Development of a complete web portal using Semantic Web technologies.

4. Information on the Companion Edition to this
Book that Covers Java and JVM Languages

This book has a companion edition that covers the use of both AllegroGraph and the
open source Sesame project using JVM based languages like Java, Clojure, JRuby,
and Scala. If you primarily work with JVM languages then you will likely be better
off working through the other edition of this book. The JVM edition of this book
offers some portability: I provide the basic functionality of AllegroGraph for RDF
storage, SPARL queries, Geo Location, and free text search using the Sesame RDF
data store and my own search and Geo Location libraries.

The Free Java Edition of AllegroGraph does not have the commercial use restrictions
that the Free Lisp Edition does.

If you want a free commercial friendly Lisp development and deployment environ-
ment: I recommend that you use the companion book with the Clojure programming
language.

5. AllegroGraph

AllegroGraph is written in Common Lisp and comes bundled in several different
products:

xiii

Preface

1. As a standalone server that supports Lisp, Ruby, Java, Clojure, Scala, Common
Lisp, and Python clients. A free version (limited to 50 million RDF triples - a
large limit) that can be used for any purpose, including commercial use.

2. The WebView interface for exploring, querying, and managing AllegroGraph
triple stores. WebView is standalone because it contains an embedded Allegro-
Graph server.

3. The Gruff for exploring, querying, and managing AllegroGraph triple stores
using table and graph views. Gruff is standalone because it contains an embed-
ded AllegroGraph server.

4. A library that is used embedded in Franz Common Lisp applications. A free
version is available (with some limitations) for non-commercial use.

This book uses AllegroGraph in embedded mode because this is the most agile way to
experiment and learn the APIs. What you learn in this book is applicable to all of the
AllegroGraph products. Currently, the server release is version 4.0 and the embedded
library release is 3.3.

6. Software License for Example Code in this
Book

The small example code snippets listed in this book text and my code for the larger
example applications and libraries in the code ZIP file are licensed using the AGPL.7

Commercial waiver of some AGPL terms for people or organizations who pur-
chase this book:

If you purchase the print edition or purchase the PDF file8 of this book then I grant
you a partial commercial use waiver to the AGPL deploying your applications on a
single server: you can use my examples in applications on a single server without the
requirement of releasing the source code for your application under the AGPL (all
other AGPL license terms apply). If you need to run an application using my code on
multiple servers, then please purchase one copy of the book for each server.

I enjoy writing and purchasing copies of this book helps fund future writing projects.

Acknowledgements

I would like to thank my wife Carol Watson for copyediting this book.
7For your convenience, I include in the code ZIP file third party libraries, most of which are released

under MIT, BSD, Lisp LGPL, or Apache licenses.
8downloading the free PDF from http://markwatson.com/opencontent does not give you the rights to this

waiver.

xiv

1. Introduction

Franz has good online documentation1 for all of their AllegroGraph products. One
purpose of this book is to provide a brief introduction to AllegroGraph but I assume
that you also reference the documentation on the Franz web site. The broader purpose
of this book is to provide application programming examples using AllegroGraph and
Linked Data sources on the web. This book also covers some of my own open source
Common Lisp projects that you may find useful for Semantic Web applications. The
combination of interactive Lisp development with embedded AllegroGraph and my
utilities covered later should provide you with an agile development environment for
writing knowledge based and semantic web applications.

AllegroGraph is an RDF data repository that can use RDFS and RDFS+ inferencing.
AllegroGraph also provides three non-standard extensions:

1. Text indexing and search

2. Geo Location support

3. Network traversal and search for social network applications

1.1. Who is this Book Written For?

I assume that you both already know how to program in Common Lisp and that
you write applications that require handling large amounts of unstructured informa-
tion. AllegroGraph is a powerful tool for handling large amounts of data and Lisp
programming environments are excellent for rapidly prototyping new applications.
Along with extra libraries I have written for using linked data sources on the web, this
book will hopefully provide you with new tools to rapidly solve application problems
that would be more difficult to handle using relational databases.

Franz also provides support for embedding AllegroGraph in Lisp applications and
for using it in a client mode with external AllegroGraph servers. Since the APIs
are almost identical, I take a shortcut in writing this book and concentrate on using
AllegroGraph in embedded mode.

1http://franz.com/agraph/support/documentation/current/agraph-introduction.html

1

1. Introduction

Information Sources
(web sites, relational
databases, document

repositories)

Typical Semantic Web Application

Data to
RDF Filters RDF Reository

RDF/RDFS/OWL
APIs

Application
Program

Figure 1.1.: Example Semantic Web Application

There are many books, good tutorials and software about the Semantic Web on the
web. However, there is not a single reference for developers who want to use the
combination of Common Lisp and AllegroGraph for development using technologies
like RDF/RDFS/OWL modeling, descriptive logic reasoners, and the SPARQL query
language.

If you own a Franz Lisp and AllegroGraph development license, then you are set to
go. If not, you need to download and install a free edition copy at:

http://www.franz.com/downloads/

You may also want to download and install the free versions of the AllegroGraph
standalone server, Gruff, and WebView.2

Franz Inc. has provided support for my writing this book in the form of technical re-
views and my understanding is that even though you will need to periodically refresh
your free non-commercial license, there is no inherent time limit for non-commercial
use. I would also like to thank Franz for providing me with an Enterprise developers
license for my MacBook that I use for my own research and development projects.

2I do not use these associated products in this book but I do in the Java, Clojure, Scala, and JRuby edition
of this book.

2

1.2. Why a PDF Copy of this Book is Available Free on the Web

1.2. Why a PDF Copy of this Book is Available
Free on the Web

As an author I want to earn a living writing and have many people read and enjoy my
books. By offering for sale the print version of this book I can earn some money for
my efforts and also allow readers who can not afford to buy many books or may only
be interested in a few chapters to read it from my web site. If you support my future
writing projects by purchasing either the print or PDF version of this book, I thank
you by offering you more flexibility in the software license terms for the example
programs and libraries I developed (see Section 6 in the Preface).

Please note that I do not give permission to post the PDF version of this book on other
people’s web sites: I consider this to be at least indirectly commercial exploitation in
violation the Creative Commons License that I have chosen for this book.

1.3. Book Software

You can download a large ZIP file containing all code and test data from the URL:

http://markwatson.com/opencontent/lisp_semantic_web_code.zip

The book example code, libraries, and applications are organized in subdirectories
organized by topic:

1. dbpedia - use the DBPedia web services

2. freebase client - use the Freebase web services

3. geonames - use the Geonames web service

4. knowledgebooks nlp - my natural language processing library

5. opencalais - use the OpenCalais web services

6. quick start allegrograph lisp embedded - code snippets used to introduce Al-
legrograph

7. quick start allegrograph standalone server - code snippets for Chapter 2

8. rdf - additional code snippets for created RDF triples and making queries

9. reasoning - code snippets for Chapter 8

10. sparql - code snippets and sample data for SPARQL queries

3

1. Introduction

11. test data - miscellaneous test data files

12. utils - third party libraries3 that I use for the book examples

13. web app - both backend code from Chapter 16 and the front end web applica-
tion code from Chapter 17

1.4. Why Graph Data Representations are Better
than the Relational Database Model for
Dealing with Rapidly Changing Data
Requirements

When people are first introduced to Semantic Web technologies their first reaction is
often something like, “I can just do that with a database.” The relational database
model is an efficient way to express and work with slowly changing data models.
There are some clever tools for dealing with data change requirements in the database
world (ActiveRecord and migrations being a good example) but it is awkward to have
end users and even developers tagging on new data attributes to relational database
tables.

A major theme in this book is convincing you that modeling data with RDF and
RDFS facilitates freely extending data models and also allows fairly easy integration
of data from different sources using different schemas without explicitly converting
data from one schema to another for reuse. You will learn how to use the SPARQL
query language to use information in different RDF repositories. It is also possible to
publish relational data with a SPARQL interface. 4

1.5. What if You Use Other Programming
Languages Other Than Lisp?

If you are a Java programmer, you probably still want to learn about AllegroGraph
because Franz distributes a free Java version of AllegroCache that can be used for any
purposes (including commercial applications) – the free Java version is limited to 50
million RDF triples. The Java version is a natively compiled Franz Lisp application
that provides plain socket and HTTP/REST interfaces.

3cl-json, s-xml, split-sequence, usocket, trivial-gray-streams, flexi-streams, chunga, cl-base64, puri,
drakma, and cl-geonames

4The open source D2R project provides a wrapper for relational databases that provides a SPARQL query
interface.

4

1.5. What if You Use Other Programming Languages Other Than Lisp?

If you do most of your development in other languages like Ruby and Python then
you can run the free server edition using the HTTP/Sesame client protocol. Sesame
is a high quality “batteries included” Java library for Semantic Web development; the
Sesame client protocol is well documented and simple to use but will not be covered
here. If you use the Sesame protocol then you have the flexibility of using both
Franz’s free server edition of AllegroGraph and Sesame which is open source with a
BSD style license.

5

2. AllegroGraph Embedded Lisp
Quick Start

The first section of this book will cover Semantic Web technologies from a theoretical
and reference point of view. Since I want you to follow along with the book material
as I present it, this chapter is intended to get you comfortable using Lisp and embed-
ded AllegroGraph: it will be easier to work through the theory in Chapters 3, 4, and 6
if you understand the basics of AllegroGraph. After this more detailed look at some
theory we will dig deeper into AllegroGraph development techniques in Chapters 7,
8, and 9.

2.1. Starting AllegroGraph

In this chapter and in much of this book, you can save some effort by copying and
pasting the code snippets into the Lisp listener. The code snippets used in this chap-
ter are contained in the source file quick start lisp embedded.lisp. I assume that
most readers are trying AllegroGraph using the free non-commercial use version so
that is what I will use here. If you are using a commercially licensed version the
examples will work the same but the initial banner display by alisp (conventional
case insensitive Lisp shell) and mlisp (“modern” case sensitive Lisp shell) will be
slightly different. While I usually use alisp in my work (I have been using Lisp for
professional development since 1982), Franz recommends using mlisp for Allegro-
Graph development so we will use mlisp in this book. You will need to follow the
directions in acl81 express/readme.txt to build a mlisp image to use. When showing
interactive examples in this chapter I remove some Lisp shell messages so when you
work along with these examples expect to see more output than what is shown here:1

markw$ mlisp
International Allegro CL Free Express Edition
8.2 [Mac OS X (Intel)] (Jul 9, 2009 17:15)
Copyright (C) 1985-2007, Franz Inc., Oakland, CA, USA.

All Rights Reserved.

1I use OS X and Linux for my development. If you are a Windows user, follow the installation instructions
on the AllegroGraph download web page and expect to see slight differences to the interactive example
sessions that I use in this book.

7

2. AllegroGraph Embedded Lisp Quick Start

This development copy of Allegro CL is licensed to:
Trial User

;; Current reader case mode: :case-sensitive-lower
cl-user(1): (require :agraph)
AllegroGraph Lisp Edition 3.2 [built on March 16, 2009 15:05:15 GMT-0700]
t
cl-user(2): (in-package :db.agraph.user)
#<The db.agraph.user package>
TRIPLE-STORE-USER(3):

Please note that you will see many lines of output that I did not show. Here I
required the :agraph package and changed the current Common Lisp package to
db.agraph.user. In examples later in this book when we develop complete applica-
tion examples we will be using our own application-specific packages and I will show
you then what you need in general to import from db.agraph and db.agraph.user.
We will continue this interactive example Lisp session in the following sections.

I use interactive sessions in a command window for the examples in this book. If you
are a Windows user then you will may want to alternatively try the Windows-specific
IDE. I recommend that OS X, Linux, and Windows users use Emacs to develop Lisp
code.2

If you run Franz Lisp in a terminal shell then I recommend that you start it using
rlwrap. As an example, using OS X and Linux, I create an alias like:

alias lisp=’rlwrap alisp’

Using rlwrap lets you use the up arrow key to rerun previous commands, edit previous
commands, etc.

2.2. Working with RDF Data Stores

RDF data stores provide the services for storing RDF triple data and provide some
means of making queries to identify some subset of the triples in the store. It is
important to keep in mind that the mechanism for maintaining triple stores varies in
different implementations. Triples can be stored in memory, in disk-based btree stores
like BerkeleyDB, in relational databases, and in custom stores like AllegroGraph.

2Franz provides their own Emacs tools: look for instructions for installing ELI. However, I also use the
SLIME Emacs Lisp development tools that are compatible with all versions of Lisp that I use: Franz,
SBCL, ClozureCL, and Gambit-C Scheme. Franz provides SLIME installation instructions for Franz
Common Lisp

8

2.2. Working with RDF Data Stores

While much of this book is specific to Common Lisp and AllegroGraph, the concepts
that you will learn and experiment with can be useful if you also use other languages
and platforms like Java (Sesame, Jena, OwlAPIs, etc.), Ruby (Redland RDF), etc.
For Java developers Franz offers a Java version of AllegroGraph (implemented in
Lisp with a network interface that also supports Python and Ruby clients) that I cover
in the Java edition of this book.

2.2.1. Creating Repositories

AllegroGraph uses disk-based RDF storage with automatic in-memory caching. For
the examples in this book I will assume that all RDF stores are kept in the temporary
directory /tmp. For deployed systems you will clearly want to use a permanent loca-
tion. For Windows(tm) development you can either change this location or create a
new directory in c:\tmp. In the examples in this book, I assume a Mac OS X, Linux,
or other Unix type file system:

TRIPLE-STORE-USER(3): (create-triple-store
"/tmp/rdfstore_1")

#<db.agraph::triple-db /tmp/rdfstore_1, open @ #x109682>

I hope that you are following along with this running example – you will better un-
derstand this material if you type it into a Lisp shell.

While it is possible to simultaneously work with multiple repositories (and this is
well documented in Franz’s online documentation for the non-free versions of Alle-
groGraph) for all of the tutorials, examples, and sample applications in this book we
need just a single open repository in order to be compatible with the free versions of
AllegroGraph.

We will see in Chapter 3 how to partition RDF triples into different namespaces and
to use existing RDF data and schemas in different namespaces. In the following code
snippet I introduce the AllegroGraph APIs for defining new namespaces and listing
all namespaces defined in the current repository:

TRIPLE-STORE-USER(4): (register-namespace "kb"
"http://knowledgebooks.com/rdfs#")

"http://knowledgebooks.com/rdfs#"
TRIPLE-STORE-USER(5): (display-namespaces)
rdfs => http://www.w3.org/2000/01/rdf-schema#
err => http://www.w3.org/2005/xqt-errors#
fn => http://www.w3.org/2005/xpath-functions#
rdf => http://www.w3.org/1999/02/22-rdf-syntax-ns#
xs => http://www.w3.org/2001/XMLSchema#

9

2. AllegroGraph Embedded Lisp Quick Start

xsd => http://www.w3.org/2001/XMLSchema#
owl => http://www.w3.org/2002/07/owl#
kb => http://knowledgebooks.com/rdfs#

Here I created a new name space that has an abbreviation (or nickname) kb: and
then printed out all registered namespaces. To insure data integrity be sure to call
(close-triple-store) to close an RDF triple store when you are done with it. I leave
the connection open because we will continue to use it in this chapter.

2.2.2. AllegroGraph Lisp Reader Support for RDF

In general, the subject, predicate, and object parts of an RDF triple can be either URIs
or literals.

AllegroGraph provides a Lisp reader macro ! that makes it easier to enter URIs and
literals. For example, the following two URIs are functionally equivalent given the
(register-namespace “kb” ...) in the last section:

<http://knowledgebooks.com/rdfs#containsPerson>
!kb:containsPerson

String literals are also defined using the ! reader macro; for example:

!"Barack Obama"
!"101 Main Street"

2.2.3. Adding Triples

A triple consists of a subject, predicate, and object. We refer to these three values as
symbols :s, :p, and :o when using the AllegroGraph APIs. We saw the use of literals
with the ! Lisp reader macro in the last section. If we need to refer to either a subject,
predicate, or object as a web URI then we use the function resource:

TRIPLE-STORE-USER(15): (resource "http://demo_news/12931")
!<http://demo_news/12931>
TRIPLE-STORE-USER(16): (defvar *demo-article*

(resource
"http://demo_news/12931"))

demo-article
TRIPLE-STORE-USER(17): *demo-article*
!<http://demo_news/12931>

10

2.2. Working with RDF Data Stores

The function add-triple takes three arguments for the subject, predicate, and object
in a triple:

TRIPLE-STORE-USER(18): (add-triple *demo-article*
!rdf:type
!kb:article)

1
TRIPLE-STORE-USER(19): (add-triple *demo-article*

!kb:containsPerson
!"Barack Obama")

2

We used a combination of a generated resource, two predicates defined in the rdf:
and kb: namespaces, and a string literal to define two triples. You notice that the
function add-triple returns an integer as its value: this is a unique ID for the newly
created triple.

2.2.4. Fetching Triples by ID

Triples in an AllegroGraph RDF store can be identified by a unique ID; this ID value
is returned as the value of calling add-triple and can be used to fetch a triple:

TRIPLE-STORE-USER(20): (get-triple-by-id 2)
<12931 containsPerson Barack Obama>
TRIPLE-STORE-USER(21): (defvar *triple*

(get-triple-by-id 2))

triple
TRIPLE-STORE-USER(22): *triple*
<12931 containsPerson Barack Obama>

We will seldom access triples by ID – we will see shortly how to query a RDF store
to find triples.

2.2.5. Printing Triples

The function print-triple can be used to print a short form of a triple and by adding
the arguments :format :concise we can also print a triple in the NTriple format:

TRIPLE-STORE-USER(23): (print-triple *triple*
:format :concise)

11

2. AllegroGraph Embedded Lisp Quick Start

<4: http://demo_news/12931 kb:containsPerson
Barack Obama>

<12931 containsPerson Barack Obama>
TRIPLE-STORE-USER(24): (print-triple *triple*)
<http://demo_news/12931>

<http://knowledgebooks.com/rdfs#containsPerson>
"Barack Obama" .

<12931 containsPerson Barack Obama>

Function print-triple prints a triple to standard output and returns the triple value in
the short notation. We will see later in Section 2.2.6 how to create something like
a database cursor for iterating through multiple triples that we find by querying a
triple store. For now we will use query function get-triples-list that returns all triples
matching a query in a list. The utility function print-triples prints all triples in a list:

TRIPLE-STORE-USER(27): (print-triples (list *triple*))
<http://demo_news/12931>

<http://knowledgebooks.com/rdfs#containsPerson>
"Barack Obama" .

TRIPLE-STORE-USER(28): (print-triples (get-triples-list))
<http://demo_news/12931>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://knowledgebooks.com/rdfs#article> .

<http://demo_news/12931>
<http://knowledgebooks.com/rdfs#containsPerson>
"Barack Obama" .

When get-triples-list is called with no arguments it simply returns all triples in a data
store. We can specify query matching values for any combination of :s, :p, and :o.
We can look at all triples that have their subject equal to the resource we created for
the demo article:

TRIPLE-STORE-USER(31): (print-triples
(get-triples-list :s *demo-article*))

<http://demo_news/12931>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://knowledgebooks.com/rdfs#article> .

<http://demo_news/12931>
<http://knowledgebooks.com/rdfs#containsPerson>
"Barack Obama" .

We can limit query results further; in this case we add the condition that the object
must equal the value of the type !kb:article:

12

2.2. Working with RDF Data Stores

TRIPLE-STORE-USER(33): (print-triples
(get-triples-list :s *demo-article*

:o !kb:article))
<http://demo_news/12931>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://knowledgebooks.com/rdfs#article> .

I often need to manually reformat program example text and example program output
in this book. The last three lines in the last example would appear on a single line if
you are following along with these tutorial examples in a Lisp listener (as you should
be!). In any case, RDF triple data in the NTriple format that we are using here is
free-format: a triple is defined by three tokens (each with no embedded whitespace
unless inside a string literal) and ended with a period character.

2.2.6. Using Cursors to Iterate Through Query Results

You are probably familiar with relational databases, the SQL query language, and
client libraries that allow you to iterate through very large result sets. Allegrograph
provides a cursor API for doing the same thing, as seen in this example:

TRIPLE-STORE-USER(39): (setq a-cursor (get-triples
:s

demo-article))
#<DB.AGRAPH::FILTERED-CURSOR

#<DB.AGRAPH::ROW-CURSOR
#<DB.AGRAPH::TRIPLE-RECORD-FILE @ #x113fd61a> ...
#x11672082>

@ #x1167219a>
TRIPLE-STORE-USER(40): (while (cursor-next-p a-cursor)

; cursor-next returns a vector, not a triple:
(print (cursor-next-row a-cursor)))

<12931 type article>
<12931 containsPerson Barack Obama>
NIL
TRIPLE-STORE-USER(41):

I usually find it simpler to use the get-triples-list API that returns a list of results. I
only use cursors when a query may return hundreds or thousands of results.

13

2. AllegroGraph Embedded Lisp Quick Start

2.2.7. Saving Triple Stores to Disk as XML, N-Triples, and
N3

It is often useful to copy either all triples in data store or triples matching a query to
a flat disk file in N-Triples format:

(with-open-file (output "/tmp/sample.ntriple"
:direction :output
:if-does-not-exist :create)

(print-triples (get-triples-list)
:stream output :format :ntriple))

In this example, I did not use any query filtering when calling get-triples-list so the
entire contents of the data store is written to a local flat file. Note that in this last
example, everything gets read into memory; this could cause problems if you had
millions of triples in the datastore.

Output in the file might look like:

<http://demo_news/12931>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://knowledgebooks.com/rdfs#article> .

<http://demo_news/12931>
<http://knowledgebooks.com/rdfs#containsPerson>
"Barack Obama" .

Here we see two triples in N-Triple format. In most applications the RDF data store
will be persistent and reused over multiple application restarts. While the disk-based
triple store is persistent for many applications it is a good idea to support export-
ing triples in a standard format line the N-Triple format that we use here, the XML
serialization format, or the newer and more compact N3 format.

2.3. AllegroGraph’s Extensions to RDF

We have seen that RDF triples contain three values: subject, predicate, and object.
We will cover this more in Chapter 3. AllegroGraph extends RDF adding two addi-
tional values:

1. graph-id – optional string to specify which graph the RDF triple belongs to

2. triple-id – unique triple ID

14

2.3. AllegroGraph’s Extensions to RDF

The subject, predicate, object, and graph value strings are uniquely stored in a
global string table (like the symbol table a compiler uses) so that triples can more
efficiently store indices rather than complete strings. Storing just a single copy of
each unique string also save memory and disk storage. Comparing string table indices
is also much faster than storing string values.

2.3.1. Examples Using Triple and Graph IDs

In the following example we will extend the example started earlier in this chapter
by adding an additional triple specifying an optional graph ID value and the value for
the RDF data store. If you had closed the connection to our example triple store with
(close-triple-store) then start by reopening it:

(require :agraph)
(in-package :db.agraph.user)

(create-triple-store "/tmp/rdfstore_1")
;; default data store is kept in *db*
db

The value of *db* prints as:

#<DB.AGRAPH::TRIPLE-DB /tmp/rdfstore_1,
open @ #x11790d02>

After registering a namespace we add three triples. Unlike the examples seen earlier
in this chapter, we specify values for two optional parameters for the connection and
the graph value to function add-triple:

(register-namespace "kb"
"http://knowledgebooks.com/rdfs#")

(resource "http://demo_news/12931")
(defvar *demo-article*

(resource "http://demo_news/12931"))

(add-triple *demo-article* !rdf:type !kb:article
:db *db* :g !"news-data")

(add-triple *demo-article*
!kb:containsPerson !"Barack Obama"
:db *db* :g !"news-data")

(add-triple *demo-article* !kb:processed !"yes"
:db *db* :g !"work-flow")

15

2. AllegroGraph Embedded Lisp Quick Start

In addition to queries based on values of subject, predicate, and object we can also
filter results by specifying a value for the graph:

;; query on optional graph value:
(print-triples (get-triples-list :g !"work-flow"))

producing the output:

<http://demo_news/12931>
<http://knowledgebooks.com/rdfs#processed>
"yes" .

For the last three triples that we added to the triple store we used the optional :db
keyword argument for function add-triple. Because we used the triple store stored in
the global variable *db* using this optional keyword argument had no effect. How-
ever, it is possible to have multiple triple stores open at the same time so it can make
sense to partition RDF data over multiple data stores on different servers. We will not
concern ourselves in this book (except for mentioning it here) with AllegroGraph’s
client API functionality to access multiple distributed AllegroGraph servers. Franz’s
online documentation covers how to use the federation mechanism.

The function add-triple returns as its value the newly created triple’s ID and has the
side effect of adding the triple to the currently opened data store. While it is not best
practice to use this unique internal AllegroGraph triple ID as a value referenced in
another triple, there may be reasons in an application to store the IDs of newly created
triples in order to be able to retrieve them from ID; for example:

TRIPLE-STORE-USER(15): (get-triple-by-id 3)
<12931 processed yes work-flow>

2.3.2. Support for Geo Location

Geo Location support in AllegroGraph is more general than 2D map coordinates or
other 2D coordinate systems. I will briefly introduce you to the Geo Location APIs
and also refer you to Franz’s online documentation. The example code snippers for
this section are found in the file quick start allegrograph lisp embedded/geoloc.lisp:

(require :agraph)

(in-package :db.agraph.user)
(enable-!-reader)

16

2.3. AllegroGraph’s Extensions to RDF

(register-namespace "g" "http://knowledgebooks.com/geo#")
(create-triple-store "/tmp/geospatial-test")

;; define some locations in Verde Valley, Arizona:
(defvar *locs*
’(("Verde_Valley_Ranger_Station" 34.7666667 -112.1416667)

("Verde_Valley_School" 34.8047596 -111.8060388)
("Sedona" 34.8697222 -111.7602778)
("Cottonwood" 34.739 -112.009)
("Jerome" 34.75 -112.11)
("Flagstaff" 35.20 -111.63)
("Clarkdale" 34.76 -112.05)
("Mount_Wilson" 35.996 -114.611)
("Tuzigoot" 34.56 -111.84)))

Here I have defined a few locations in my area (in the mountains of Central Arizona)
by latitude and longitude values. I will want to determine the minimum and maximum
latitude and longitude in the data; the following simple map and reduce pattern does
this:

(defvar *min-lat* (reduce #’min (mapcar #’cadr *locs*)))
(defvar *max-lat* (reduce #’max (mapcar #’cadr *locs*)))
(defvar *min-lon* (reduce #’min (mapcar #’caddr *locs*)))
(defvar *max-lon* (reduce #’max (mapcar #’caddr *locs*)))

The following code snippet creates and registers a new AllegroGraph Geo Spatial
type based on the desired striping resolution and the minimum and maximum latitude
and longitude values:

;; create a type:
(setf offset 5.0)
(flet ((fixup (num direction)

(if (eq direction :min)
(- num offset)

(+ num offset))))
(setf *verde-valley-arizona*

(db.agraph:register-latitude-striping-in-miles
3
:lat-min (fixup *min-lat* :min)
:lat-max (fixup *max-lat* :max)
:lon-min (fixup *min-lon* :min)
:lon-max (fixup *max-lon* :max))))

(add-geospatial-subtype-to-db *verde-valley-arizona*)

17

2. AllegroGraph Embedded Lisp Quick Start

After this setup we are ready to add latitude and longitude triples for each location:

(dolist (loc *locs*)
(let ((name (intern-resource

(format nil "http://knowledgebooks.com/geo#˜a"
(car loc)))))

(print name)
(add-triple name !g:isAt3

(longitude-latitude->upi *verde-valley-arizona*
(caddr loc) (cadr loc)))))

(index-all-triples :wait t)

(print
(count-cursor
(get-triples-haversine-miles *verde-valley-arizona*

!g:isAt3
-112.009 34.739 ; longitude and latitude

30.0)) ; distance in miles

(dolist (distance ’(50.0 30.0 10.0 5.0))
(format t "˜%˜%Checking with distance = ˜A˜%" distance)
(let ((cursor

(get-triples-haversine-miles

verde-valley-arizona !g:isAt3
-112.009 34.739 distance)))

(while (cursor-next-p cursor)
(print (cursor-next-row cursor)))))

In this example, I print out the number locations in the triple store within 30 miles
of the location (-112.009 34.739) and a list of all locations within 50, 30, 10, and 5
miles of this same location. Here is the part of the output for distances of 10 and 5
miles:

Checking with distance = 10.0

<Verde_Valley_Ranger_Station isAt3
+344559.99894-1120830.01273>

<Jerome isAt3 +344500-1120636.00212>
<Clarkdale isAt3 +344535.99394-1120300.01091>
<Cottonwood isAt3 +344420.39424-1120032.40939>

Checking with distance = 5.0

18

2.3. AllegroGraph’s Extensions to RDF

<Clarkdale isAt3 +344535.99394-1120300.01091>
<Cottonwood isAt3 +344420.39424-1120032.40939>

2.3.3. Support for Free Text Indexing

The AllegroGraph support for free text indexing is very useful and we will use later
in this book in the example semantic web portal developed in Chapters 16 and 17.
When I develop using Java or Ruby (the two languages I use most, in addition to
Common Lisp) a common pattern is to use a data store like PostgreSQL or Mon-
goDB with a separate text index and search library like Lucene. When working in
Lisp with Allegrograph it is fast and agile to use Allegrograph for both data stor-
age and text search. The example code snippets for this section are found in the file
quick start allegrograph lisp embedded/text.lisp.

We will start with a new test triple store:

(require :agraph)
(in-package :db.agraph.user)

(enable-!-reader) ; enable the ! reader macro

(create-triple-store "/tmp/index_test")
(register-namespace "kb"

"http://knowledgebooks.com/rdfs#")

By default, text indexing is turned off on triples but we can request that all triples
with a specified predicate will be indexed:

(register-freetext-predicate !kb:containsPerson)

(print (freetext-registered-predicates))

After registering a predicate, you can print out all predicates registered for indexing.
The following code snippet creates a few test triples and all the triples using the
predicate !kb:containsPerson will be indexed and thus searchable:

(resource "http://demo_news/12931")
(defvar *demo-article*

(resource "http://demo_news/12931"))

(add-triple *demo-article* !rdf:type !kb:article)
(add-triple *demo-article* !kb:containsPerson

19

2. AllegroGraph Embedded Lisp Quick Start

!"Barack Obama")
(add-triple *demo-article* !kb:containsPerson

!"Bill Clinton")
(add-triple *demo-article* !kb:containsPerson

!"Bill Jones")

The following uses the API freetext-get-ids that performs a free text search and re-
turns all triple IDs that contain the query text; I then iterate over the results of a few
additional example queries using cursors:

(print (freetext-get-ids "Clinton"))

(iterate-cursor (triple (freetext-get-triples
’(and "Bill" "Jones")))

(print triple))
(iterate-cursor (triple (freetext-get-triples "Bill"))

(print triple))
(iterate-cursor (triple (freetext-get-triples

’(or "Jones" "Clinton")))
(print triple))

If I am not expecting many results for a text search query, then I prefer to use the API
that returns all results at once in a list:

(print
(freetext-get-triples-list ’(or "Bill" "Barack")))

In this example I used the Lisp APIs for finding triples containing search terms. You
will see in Chapter 5 how to use text search in SPARQL queries and in Chapter 9 I
will show you how to use test search using Franz’s Prolog query interface.

2.3.4. Comparing AllegroGraph With Other Semantic Web
Frameworks

Although this book is about developing Semantic Web applications using Allegro-
Graph, it is also worthwhile to mention alternative technologies that can be used in
addition to or instead of AllegroGraph.

The two alternative technologies that I have used most for Semantic Web applications
are Swi-Prolog with its Semantic Web libraries (open source, LGPL) and the Java
Sesame project (open source, BSD style license). Swi-Prolog is an excellent tool
for experimenting and learning about the Semantic Web. Sesame is a complete Java

20

2.4. AllegroGraph Quickstart Wrap Up

framework that is appropriate for applications written in Java. These alternatives have
the advantage of being free to use but lack advantages of scalability and utility that a
commercial product like AllegroGraph has.

2.4. AllegroGraph Quickstart Wrap Up

This short chapter gave you a brief introduction to running AllegroGraph interac-
tively and some of the APIs that you will be using most frequently. This chapter has
shown you the basics for using the Common Lisp APIs for AllegroGraph and if you
have followed along with the examples here and then follow through the interactive
SPARQL and Prolog examples in later chapters you will be able to understand and
use the application specific examples from the last part of this book.

21

Part I.

Semantic Web Technologies

23

3. RDF

The Semantic Web is intended to provide a massive linked data set for use by software
systems just as the World Wide Web provides a massive collection of linked web
pages for human reading and browsing. The Semantic Web is like the World Wide
Web in that anyone can generate any content that they want. This freedom to publish
anything works for the web because we use our ability to understand natural language
to interpret what we read – and often to dismiss material that based upon our own
knowledge we consider to be incorrect.

The core concept for the Semantic Web is data integration and use from different
sources. As we will soon see, the tools for implementing the Semantic Web are
designed for encoding data and sharing data from many different sources.

The Resource Description Framework (RDF) is used to encode information and the
RDF Schema (RDFS) language defines properties and classes and also facilitates
using data with different RDF encodings without the need to convert data to use
different schemas. For example, no need to change a property name in one data set to
match the semantically identical property name used in another data set. Instead, you
can add an RDF statement that states that the two properties have the same meaning.

I do not consider RDF data stores to be a replacement for relational databases but
rather something that you will use with databases in your applications. RDF and
relational databases solve difference problems. RDF is appropriate for sparse data
representations that do not require inflexible schemas. You are free to define and use
new properties and use these properties to make statements on existing resources.
RDF offers more flexibility: defining properties used with classes is similar to defin-
ing the columns in a relational database table. You do not need to define properties
for every instance of a class. This is analogous to a database table that can be missing
columns for rows that do not have values for these columns (a sparse data representa-
tion). Furthermore, you can make ad hoc RDF statements about any resource without
the need to update global schemas. We will use the SPARQL query language to ac-
cess information in RDF data stores. SPARQL queries can contain optional matching
clauses that work well with sparse data representations.

RDF data was originally encoded as XML and intended for automated processing. In
this chapter we will use two simple to read formats called N-Triples and N31. There

1N3 is a far better format to work with if you want to be able to read RDF data files and understand
their contents. Currently AllegroGraph does not support N3 but Sesame does. I will usually use the

25

3. RDF

are many tools available that can be used to convert between all RDF formats so we
might as well use formats that are easier to read and understand. RDF data consists
of a set of triple values:

• subject - this is a URI

• predicate - this is a URI

• object - this is either a URI or a literal value

A statement in RDF is a triple composed of a subject, predicate, and object. A single
resource containing a set of RDF triples can be referred to as an RDF graph. These
resources might be a downloadable RDF file that you can load into AllegroGraph
or Sesame, a web service that returns RDF data, or a SPARQL endpoint that is a
web service that accepts SPARQL queries and returns information from an RDF data
store.

While we tend to think in terms of objects and classes when using object oriented
programming languages, we need to readjust our thinking when dealing with knowl-
edge assets on the web. Instead of thinking about “objects” we deal with “resources”
that are specified by URIs. In this way resources can be uniquely defined. We will
soon see how we can associate different namespaces with URI prefixes – this will
make it easier to deal with different resources with the same name that can be found
in different sources of information.

While subjects will almost always be represented as URIs of resources, the object
part of triples can be either URIs of resources or literal values. For literal values, the
XML schema notation for specifying either a standard type like integer or string, or
a custom type that is application domain specific.

You have probably read articles and other books on the Semantic Web, and if so,
you are probably used to seeing RDF expressed in its XML serialization format: you
will not see XML serialization in this book. Much of my own confusion when I was
starting to use Semantic Web technologies ten years ago was directly caused by trying
to think about RDF in XML form. RDF data is graph data and serializing RDF as
XML is confusing and a waste of time when either the N-Triple format or even better,
the N3 format are so much easier to read and understand.

Some of my work with Semantic Web technologies deals with processing news sto-
ries, extracting semantic information from the text, and storing it in RDF. I will use
this application domain for the examples in this chapter. I deal with triples like:

• subject: a URI, for example the URL of a news article

• predicate: a relation like ”a person’s name” that is represented as a URI like

N3 format when discussing ideas but use the N-Triple format as input for example programs and for
output when saving RDF data to files.

26

3.1. RDF Examples in N-Triple and N3 Formats

<http://knowledgebooks.com/rdf/person/name>2

• object: a literal value like ”Bill Clinton” or a URI

We will always use URIs3 as values for subjects and predicates, and use URIs or
string literals as values for objects. In any case URIs are usually preferred to string
literals because they are unique; for example, consider the two possible values for a
triple object:

• ”Bill Clinton” - as a string literal, the value may not refer to President Bill
Clinton.

• <http://knowledgebooks.com/rdf/person#BillClinton> - as a URI, we can later
make this URI a subject in a triple and use a relation to specify that this partic-
ular person had the job of President of the United States.

We will see an example of this preferred use but first we need to learn the N-Triple
and N3 RDF formats.

3.1. RDF Examples in N-Triple and N3 Formats

In the Introduction I proposed the idea that RDF was more flexible than Object Mod-
eling4 in programming languages, relational databases, and XML with schemas5. If
we can tag new attributes on the fly to existing data, how do we prevent what I might
call “data chaos” as we modify existing data sources? It turns out that the solution to
this problem is also the solution for encoding real semantics (or meaning) with data:
we usually use unique URIs for RDF subjects, predicates, and objects, and usually
with a preference for not using string literals. I will try to make this idea more clear
with some examples.

Any part of a triple (subject, predicate, or object) is either a URI or a string literal.
URIs encode namespaces. For example, the containsPerson property is used as the
value of the predicate in this triple; the last example could properly be written as:

2URIs, like URLs, start with a protocol like HTTP that is followed by an internet domain.
3Uniform Resource Identifiers (URIs) are special in the sense that they (are supposed to) represent unique

things or ideas. As we will see in Chapter 10, URIs can also be ”dereferenceable” in that we can treat
them as URLs on the web and ”follow” them using HTTP to get additional information about a URI.

4We will model classes (or types) using RDFS and OWL but the difference is that an object in an OO
language is explicitly declared to be a member of a class while a subject URI is considered to be in a
class depending only on what properties it has. If we add a property and value to a subject URI then
we may immediately change its RDFS or OWL class membership.

5I think that there is some similarity between modeling with RDF and document oriented data stores like
MongoDB or CouchDB where any document in the system can have any attribute added at any time.
This is very similar to being able to add additional RDF statements that either add information about a
subject URI or add another property and value that somehow narrows the ”meaning” of a subject URI.

27

3. RDF

http://knowledgebooks.com/ontology/#containsPerson

The first part of this URI is considered to be the namespace6 for (what we will
use as a predicate) “containsPerson.” Once we associate an abbreviation like kb
for http://knowledgebooks.com/ontology/ then we can just use the QName (“quick
name”) with the namespace abbreviation; for example:

kb:containsPerson

Being able to define abbreviation prefixes for namespaces makes RDF and RDFS
files shorter and easier to read.

When different RDF triples use this same predicate, this is some assurance to us that
all users of this predicate subscribe to the same meaning. Furthermore, we will see
in Section 4.1 that we can use RDFS to state equivalency between this predicate (in
the namespace http://knowledgebooks.com/ontology/) with predicates represented by
different URIs used in other data sources. In an “artificial intelligence” sense, soft-
ware that we write does not understand a predicate like “containsPerson” in the way
that a human reader can by combining understood common meanings for the words
“contains” and “person” but for many interesting and useful types of applications that
is fine as long as the predicate is used consistently.

Because there are many sources of information about different resources the ability
to define different namespaces and associate them with unique URI prefixes makes it
easier to deal with situations.

A statement in N-Triple format consists of three URIs (or string literals – any combi-
nation) followed by a period to end the statement. While statements are often written
one per line in a source file they can be broken across lines; it is the ending period
which marks the end of a statement. The standard file extension for N-Triple format
files is *.nt and the standard format for N3 format files is *.n3.

My preference is to use N-Triple format files as output from programs that I write to
save data as RDF. I often use either command line tools or the Java Sesame library to
convert N-Triple files to N3 if I will be reading them or even hand editing them. You
will see why I prefer the N3 format when we look at an example:

@prefix kb: <http://knowledgebooks.com/ontology#> .
<http://news.com/201234 /> kb:containsCountry "China" .

6You have seen me use the domain knowledgebooks.com several times in examples. I have owned this
domain and used it for business since 1998 and I use it here for convenience. I could just as well
use example.com. That said, the advantage of using my own domain is that I then have the flexibility
to make this URI ”dereferenceable” by adding an HTML document using this URI as a URL that
describes what I mean by ”containsPerson.” Even better, I could have my web server look at the request
header and return RDF data if the requested content type was ”text/rdf”

28

3.1. RDF Examples in N-Triple and N3 Formats

Here we see the use of an abbreviation prefix “kb:” for the namespace for my com-
pany KnowledgeBooks.com ontologies. The first term in the RDF statement (the
subject) is the URI of a news article. When we want to use a URL as a URI, we
enclose it in angle brackets – as in this example. The second term (the predicate) is
“containsCountry” in the “kb:” namespace. The last item in the statement (the object)
is a string literal “China.” I would describe this RDF statement in English as, “The
news article at URI http://news.com/201234 mentions the country China.”

This was a very simple N3 example which we will expand to show additional features
of the N3 notation. As another example, suppose that this news article also mentions
the USA. Instead of adding a whole new statement like this:

@prefix kb: <http://knowledgebooks.com/ontology#> .
<http://news.com/201234 /> kb:containsCountry "China" .
<http://news.com/201234 /> kb:containsCountry "USA" .

we can combine them using N3 notation. N3 allows us to collapse multiple RDF
statements that share the same subject and optionally the same predicate:

@prefix kb: <http://knowledgebooks.com/ontology#> .
<http://news.com/201234 /> kb:containsCountry "China" ,

"USA" .

We can also add in additional predicates that use the same subject:

@prefix kb: <http://knowledgebooks.com/ontology#> .

<http://news.com/201234 /> kb:containsCountry "China" ,
"USA" .

kb:containsOrganization "United Nations" ;
kb:containsPerson "Ban Ki-moon" , "Gordon Brown" ,

"Hu Jintao" , "George W. Bush" ,
"Pervez Musharraf" ,
"Vladimir Putin" ,
"Mahmoud Ahmadinejad" .

This single N3 statement represents ten individual RDF triples. Each section defining
triples with the same subject and predicate have objects separated by commas and
ending with a period. Please note that whatever RDF storage system we use (we will
be using AllegroGraph) it makes no difference if we load RDF as XML, N-Triple, of
N3 format files: internally subject, predicate, and object triples are stored in the same
way and are used in the same way.

29

3. RDF

I promised you that the data in RDF data stores was easy to extend. As an example,
let us assume that we have written software that is able to read online news articles
and create RDF data that captures some of the semantics in the articles. If we extend
our program to also recognize dates when the articles are published, we can simply
reprocess articles and for each article add a triple to our RDF data store using the
N-Triple format to set a publication date7.

<http://news.com/2034 /> kb:datePublished "2008-05-11" .

Furthermore, if we do not have dates for all news articles that is often acceptable
depending on the application.

3.2. The RDF Namespace

You just saw an example of using namespaces when I used my own namespace
<http://knowledgebooks.com/ontology#>.

When you define a name space you can assign any “Quick name” (QName, or ab-
breviation) to the URI that uniquely identifies a namespace if you are using the N3
format.

The RDF namespace <http://www.w3.org/1999/02/22-rdf-syntax-ns#> is usually reg-
istered with the QName rdf: and I will use this convention. The next few sections
show the definitions in the RDF namespace that I use in this book.

3.2.1. rdf:type

The rdf:type property is used to specify the type (or class) of a resource. Notice that
we do not capitalize “type” because by convention we do not capitalize RDF property
names. Here is an example in N3 format (with long lines split to fit the page width):

@prefix rdf:
<http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix
kb:
<http://knowledgebooks.com/rdf/publication#> .

<http://demo_news/12931> rdf:type kb:article .

7This example is pedantic since we can apply XML Scehma (XSL) data types to literal string values, this
could be more accurately specified as ”2008-05-11”@http://www.w3.org/2001/XMLSchema#date

30

3.3. Dereferenceable URIs

Here we are converting the URL of a news web page to a resource and then defining
a new triple that specifies the web page resource is or type kb:article (again, using the
QName kb: for my knowledgebooks.com namespace).

3.2.2. rdf:Property

The rdf:Property class is, as you might guess from its name, used to describe and
define properties. Notice that “Property” is capitalized because by convention we
capitalize RDF class names.

This is a good place to show how we define new properties, using a previous example:

@prefix
kbcontains:
<http://knowledgebooks.com/rdf/contains#> .

<http://demo_news/12931>
kbcontains:person
"Barack Obama" .

I might make an additional statement about this URI stating that it is a property:

kbcontains:person rdf:type rdf:Property .

When we discuss RDF Schema (RDFS) in Chapter 4 we will see how to create sub-
types and sub-properties.

3.3. Dereferenceable URIs

We have been using URIs as unique identifiers representing either physical objects
(e.g., the moon), locations (e.g., London England), ideas or concepts (e.g., Christian-
ity), etc. Additionally, a URI is dereferenceable if we can follow the URI with a web
browser or software agent to fetch information from the URI. As an example, we
often use the URI

http://xmlns.com/foaf/0.1/Person

to represent the concept of a person. This URI is dereferenceable because if we use
a tool like wget or curl to fetch the content from this URI then we get an HTML
document for the FOAF Vocabulary Specification. Dereferenceable content could
also be a RDFS or OWL document describing the URI, a text document, etc.

31

3. RDF

3.4. RDF Wrap Up

If you read the World Wide Web Consortium’s RDF Primer (highly recommended)
at http://www.w3.org/TR/REC-rdf-syntax/ you will see many other classes and prop-
erties defined that, in my opinion, are often most useful when dealing with XML
serialization of RDF. Using the N-Triple and N3 formats, I find that I usually just use
rdf:type and rdf:Property in my own modeling efforts, along with a few identifiers
defined in the RDFS namespace that we will look at in the next chapter.

An RDF triple has three parts: a subject, predicate, and object.8 By itself, RDF
is good for storing and accessing data but lacks functionality for modeling classes,
defining properties, etc. We will extend RDF with RDF Schema (RDFS) in the next
chapter.

8AllegroGraph also stores a unique integer triple ID and a graph ID for partitioning RDF data and to
support graph operations. While using the triple ID and graph ID can be useful, my own preference is
to stick with using just what is in the RDF standard.

32

4. RDFS

The World Wide Web Consortium RDF Schema (RDFS) definition can be read at
http://www.w3.org/TR/rdf-schema/ and I recommend that you use this as a reference
because I will discuss only the parts of RDFS that are required for implementing
the examples in this book. The RDFS namespace http://www.w3.org/2000/01/rdf-
schema# is usually registered with the QName rdfs: and I will use this convention1.

4.1. Extending RDF with RDF Schema

RDFS supports the definition of classes and properties based on set inclusion. In
RDFS classes and properties are orthogonal. We will not simply be using properties
to define data attributes for classes – this is different than object modeling and object
oriented programming languages like Java. RDFS is encoded as RDF – the same
syntax.

Because the Semantic Web is intended to be processed automatically by software sys-
tems it is encoded as RDF. There is a problem that must be solved in implementing
and using the Semantic Web: everyone who publishes Semantic Web data is free to
create their own RDF schemas for storing data; for example, there is usually no single
standard RDF schema definition for topics like news stories, stock market data, peo-
ple’s names, organizations, etc. Understanding the difficulty of integrating different
data sources in different formats helps to understand the design decisions behind the
Semantic Web: the designers wanted to make it not only possible but also easy to
use data from different sources that might use similar schema to define properties and
classes. One common usage pattern is using RDFS to define two properties that both
define a person’s last name have the same meaning and that we can combine data that
use different schema.

We will start with an example that also uses dRDFS an is an extension of the example
in the last section. After defining kb: and rdfs: namespace QNames, we add a few
additional RDF statements (that are RDFS):

@prefix kb: <http://knowledgebooks.com/ontology#> .

1The actual namespace abbreviations that you use have no effect as long as you consistently use whatever
QName values you set for URIs in the RDF statements that use the abbreviations.

33

4. RDFS

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

kb:containsCity rdfs:subPropertyOf kb:containsPlace .
kb:containsCountry rdfs:subPropertyOf kb:containsPlace .
kb:containsState rdfs:subPropertyOf kb:containsPlace .

The last three lines that are themselves valid RDF triples declare that:

• The property containsCity is a subproperty of containsPlace.

• The property containsCountry is a subproperty of containsPlace.

• The property containsState is a subproperty of containsPlace.

Why is this useful? For at least two reasons:

• You can query an RDF data store for all triples that use property containsPlace
and also match triples with property equal to containsCity, containsCountry, or
containsState. There may not even be any triples that explicitly use the property
containsPlace.

• Consider a hypothetical case where you are using two different RDF data stores
that use different properties for naming cities: “cityName” and “city.” You
can define “cityName” to be a subproperty of “city” and then write all queries
against the single property name “city.” This removes the necessity to convert
data from different sources to use the same Schema.

In addition to providing a vocabulary for describing properties and class membership
by properties, RDFS is also used for logical inference to infer new triples, combine
data from different RDF data sources, and to allow effective querying of RDF data
stores. We will see examples of more RDFS features in Chapter 5 when we perform
SPARQL queries.

4.2. Modeling with RDFS

While RDFS is not as expressive of a modeling language as the RDFS++2 or OWL,
the combination of RDF and RDFS is usually adequate for many semantic web appli-
cations. Reasoning with and using more expressive modeling languages will require
increasingly more processing time. Combined with the simplicity of RDF and RDFS
it is a good idea to start with less expressive and only “move up the expressivity scale”
as needed.

2RDFS++ is a Franz extension to RDFS that adds some parts of OWL. I cover RDFS++ in some detail in
the Lisp Edition of this book and mention some aspects of RDFS++ in Section 4.3, the Java Edition.

34

4.2. Modeling with RDFS

Here is a short example on using RDFS to extend RDF (assume that my namespace
kb: and the RDFS namespace rdfs: are defined):

kb:Person rdf:type rdfs:Class .
kb:Person rdfs:comment "represents a human" .
kb:Manager rdf:type kb:Person .
kb:Manager rdfs:domain kb:Person .
kb:Engineer rdf:type kb:Person .
kb:Engineer rdfs:domain kb:Person .

Here we see the use of rdfs:comment used to add a human readable comment
to the new class kb:Person. When we define the new classes kb:Manager and
kb:Engineer we make them subclasses of kb:Person instead of the top level super
class rdfs:Class. We will look at examples later in that that demonstrate the utility of
models using class hierarchies and hierarchies of properties – for now it is enough to
introduce the notation.

The rdfs:domain of an rdf:property specifies the class of the subject in a triple
while rdfs:range of an rdf:property specifies the class of the object in a triple. Just
as strongly typed programming languages like Java help catch errors by performing
type analysis, creating (or using existing) good RDFS property and class definitions
helps RDFS, RDFS++, and OWL descriptive logic reasoners to catch modeling and
data definition errors. These definitions also help reasoning systems infer new triples
that are not explicitly defined in a triple data store.

We continue the current example by adding property definitions and then asserting a
triple that is valid given the type and property restrictions that we have defined using
RDFS:

kb:supervisorOf rdfs:domain kb:Manager .
kb:supervisorOf rdfs:range kb:Engineer .

"Mary Johnson" rdf:type kb:Manager .
"John Smith’’ rdf:type kb:Engineer .

"Mary Johnson" kb:supervisorOf "John Smith" .

If I tried to add a triple with “Mary Johnson” and “John Smith” reversed in the last
RFD statement then an RDFS inference/reasoning system could catch the error. This
example is not ideal because I am using string literals as the subjects in triples. In
general, you probably want to define a specific namespace for concrete resources
representing entities like the people in this example.

The property rdfs:subClassOf is used to state that all instances of one class are also
instances of another class. The property rdfs:subPropertyOf is used to state that

35

4. RDFS

all resources related by one property are also related by another; for example, given
the following N3 statements that use string literals as resources to make this example
shorter:

kb:familyMember rdf:type rdf:Property .
kb:ancestorOf rdf:type rdf:Property .
kb:parentOf rdf:type rdf:Property .

kb:ancestorOf rdfs:subPropertyOf kb:familyMember .
kb:parentOf rdfs:subPropertyOf kb:ancestorOf .

"Marry Smith" kb:parentOf "Sam" .

then the following is valid:

"Marry Smith" kb:ancestorOf "Sam" .
"Marry Smith" kb:familyMember "Sam" .

We have just seen that a common use of RDFS is to define additional application or
data-source specific properties and classes in order to express relationships between
resources and the types of resources. Whenever possible you will want to reuse ex-
isting RDFS properties and resources that you find on the web. For instance, in the
last example I defined my own subclass kb:person instead of using the Friend of a
Friend (FOAF) namespace’s definition of person. I did this for pedantic reasons: I
wanted to show you how to define your own classes and properties.

4.3. AllegroGraph RDFS++ Extensions

The unofficial version of RDFS/OWL called RDFS++ is a practical compromise be-
tween DL OWL and RDFS inferencing. AllegroGraph supports the following predi-
cates:

• rdf:type – discussed in Chapter 3

• rdf:property – discussed in Chapter 3

• rdfs:subClassOf – discussed in Chapter 4

• rdfs:range – discussed in Chapter 4

• rdfs:domain – discussed in Chapter 4

• rdfs:subPropertyOf – discussed in Chapter 4

36

4.3. AllegroGraph RDFS++ Extensions

• owl:sameAs

• owl:inverseOf

• owl:TransitiveProperty

We will now discuss owl:sameAs, owl:inverseOf, and owl:TransitiveProperty to
complete the discussion of frequently used RDFS predicates seen earlier in this Chap-
ter.

4.3.1. owl:sameAs

If the same entity is represented by two distinct URIs owl:sameAs can be used to
assert that the URIs refer to the same entity. For example, two different knowledge
sources might might define different URIs in their own namespaces for President
Barack Obama. Rather than translate data from one knowledge source to another it is
simpler to equate the two unique URIs. For example:

kb:BillClinton rdf:type kb:Person .
kb:BillClinton owl:sameAs mynews:WilliamClinton

Then the following can be verified using an RDFS++ or OWL DL capable reasoner:

mynews:WilliamClinton rdf:type kb:Person .

4.3.2. owl:inverseOf

We can use owl:inverseOf to declare that one property is the inverse of another.

:parentOf owl:inverseOf :childOf .
"John Smith" :parentOf "Nellie Smith" .

There is something new in this example: I am using a “default namespace” for :par-
entOf and :childOf. A default namespace is assumed to be application specific and
that no external software agents will need access to resources defined in the default
namespace.

Given the two previous RDF statements we can infer that the following is also true:

"Nellie Smith" :childOf "John Smith" .

37

4. RDFS

4.3.3. owl:TransitiveProperty

As its name implies owl:TransitiveProperty is used to declare that a property is
transitive as the following example shows:

kb:ancestorOf a rdf:Property .
"John Smith" kb:ancestorOf "Nellie Smith" .
"Nellie Smith" kb:ancestorOf "Billie Smith" .

There is something new in this example: in N3 you can use a as shorthand for
rdf:type. Given the last three RDF statements we can infer that:

"John Smith" : kb:ancestorOf "Billie Smith" .

4.4. RDFS Wrapup

I find that RDFS provides a good compromise: it is simpler to use than the Web On-
tology Language (OWL) and is expressive enough for many linked data applications.
As we have seen, AllegroGraph supports RDFS++ which is RDFS with a few OWL
extensions:

1. rdf:type

2. rdfs:subClassOf

3. rdfs:domain

4. rdfs:range

5. rdfs:subPropertyOf

6. owl:sameAs

7. owl:inverseOf

8. owl:TransitiveProperty

Since I only briefly covered these extensions you may want to read the documentation
on Franz’s web site3.

Sesame supports RDFS ”out of the box” and back end reasoners are available for
Sesame that support OWL4. Sesame is likely to have OWL reasoning built in to the

3http://www.franz.com/agraph/support/learning/Overview-of-RDFS++.html
4You can download SwiftOWLIM or BigOWLIM at http://www.ontotext.com/owlim/ and use either as a

SAIL backend repository to get OWL reasoning capability.

38

4.4. RDFS Wrapup

standard distribution in the future. My advice is to start building applications with
RDF and RDFS with a view to using OWL as the need arises. If you are using
AllegroGraph for your application development then certainly use the RDFS++ ex-
tensions if RDFS is too limited for your applications.

We have been using SPARQL in examples and in the next chapter we will look at
SPARQL in some detail.

39

5. The SPARQL Query Language

SPARQL is a query language used to query RDF data stores. While SPARQL may
initially look like SQL you will see that there are important differences because the
data is graph-based so queries match graph patterns instead SQL’s relational matching
operations. So the syntax is similar but SPARQL queries graph data and SQL queries
relational data in tables.

We have already been using SPARQL queries in examples in this book. I will give you
more introductory material in this chapter before using SPARQL in larger example
programs later in this book.

5.1. Example RDF Data in N3 Format

We will use the N3 format RDF file data/news.n3 for examples in this chapter. We
use the N3 format because it is easier to read and understand. There is an equivalent
N-Triple format file data/news.nt because AllegroGraph does not currently support
loading N3 files. I created these files automatically by spidering Reuters news stories
on the news.yahoo.com web site and automatically extracting named entities from the
text of the articles. I used the Java Sesame library to convert the generated N-Triple
file to N3 format. We will see similar techniques for extracting named entities from
text in Chapter 11 when I develop utilities for using the Reuters Open Calais web
services. We will also use my Natural Language Processing (NLP) library in Chapter
12 to do the same thing. In this chapter we use these sample RDF files that I have
created using Open Calais and news articles that I found on the web.

You have already seen snippets of this file in Section 4.1 and I list the entire file here
for reference ,edited to fit line width. You may find the file news.n3 easier to read if
you are at your computer and open the file in a text editor so you will not be limited
to what fits on a book page):

@prefix kb: <http://knowledgebooks.com/ontology#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

kb:containsCity rdfs:subPropertyOf kb:containsPlace .

41

5. The SPARQL Query Language

kb:containsCountry rdfs:subPropertyOf kb:containsPlace .

kb:containsState rdfs:subPropertyOf kb:containsPlace .

<http://yahoo.com/20080616/usa_flooding_dc_16 />
kb:containsCity "Burlington" , "Denver" ,

"St. Paul" ," Chicago" ,
"Quincy" , "CHICAGO" ,
"Iowa City" ;

kb:containsRegion "U.S. Midwest" , "Midwest" ;
kb:containsCountry "United States" , "Japan" ;
kb:containsState "Minnesota" , "Illinois" ,

"Mississippi" , "Iowa" ;
kb:containsOrganization "National Guard" ,

"U.S. Department of Agriculture" ,
"White House" ,
"Chicago Board of Trade" ,
"Department of Transportation" ;

kb:containsPerson "Dena Gray-Fisher" ,
"Donald Miller" ,
"Glenn Hollander" ,
"Rich Feltes" ,
"George W. Bush" ;

kb:containsIndustryTerm "food inflation" , "food" ,
"finance ministers" ,
"oil" .

<http://yahoo.com/78325/ts_nm/usa_politics_dc_2 />
kb:containsCity "Washington" , "Baghdad" ,

"Arlington" , "Flint" ;
kb:containsCountry "United States" ,

"Afghanistan" ,
"Iraq" ;

kb:containsState "Illinois" , "Virginia" ,
"Arizona" , "Michigan" ;

kb:containsOrganization "White House" ,
"Obama administration" ,
"Iraqi government" ;

kb:containsPerson "David Petraeus" ,
"John McCain" ,
"Hoshiyar Zebari" ,
"Barack Obama" ,
"George W. Bush" ,
"Carly Fiorina" ;

kb:containsIndustryTerm "oil prices" .

42

5.1. Example RDF Data in N3 Format

<http://yahoo.com/10944/ts_nm/worldleaders_dc_1 />
kb:containsCity "WASHINGTON" ;
kb:containsCountry "United States" , "Pakistan" ,

"Islamic Republic of Iran" ;
kb:containsState "Maryland" ;
kb:containsOrganization "University of Maryland" ,

"United Nations" ;
kb:containsPerson "Ban Ki-moon" , "Gordon Brown" ,

"Hu Jintao" , "George W. Bush" ,
"Pervez Musharraf" ,
"Vladimir Putin" ,
"Steven Kull" ,
"Mahmoud Ahmadinejad" .

<http://yahoo.com/10622/global_economy_dc_4 />
kb:containsCity "Sao Paulo" , "Kuala Lumpur" ;
kb:containsRegion "Midwest" ;
kb:containsCountry "United States" , "Britain" ,

"Saudi Arabia" , "Spain" ,
"Italy" , India" ,
""France" , "Canada" ,
"Russia" , "Germany" , "China" ,
"Japan" , "South Korea" ;

kb:containsOrganization "Federal Reserve Bank" ,
"European Union" ,
"European Central Bank" ,
"European Commission" ;

kb:containsPerson "Lee Myung-bak" , "Rajat Nag" ,
"Luiz Inacio Lula da Silva" ,
"Jeffrey Lacker" ;

kb:containsCompany "Development Bank Managing" ,
"Reuters" ,
"Richmond Federal Reserve Bank" ;

kb:containsIndustryTerm "central bank" , "food" ,
"energy costs" ,
"finance ministers" ,
"crude oil prices" ,
"oil prices" ,
"oil shock" ,
"food prices" ,
"Finance ministers" ,
"Oil prices" , "oil" .

43

5. The SPARQL Query Language

5.2. Example SPARQL SELECT Queries

In the following examples, we will look at queries but not the results. You have
already seen results of SPARQL queries when we ran the AllegroGraph and Sesame
wrapper examples.

We will start with a simple SPARQL query for subjects (news article URLs) and ob-
jects (matching countries) with the value for the predicate equal to containsCountry:

SELECT ?subject ?object
WHERE {

?subject
http://knowledgebooks.com/ontology#containsCountry>
?object .

}

Variables in queries start with a question mark character and can have any names.
Since we are using two free variables (?subject and ?object) each matching result
will contain two values, one for each of these variables.

We can make this last query easier to read and reduce the chance of misspelling errors
by using a namespace prefix:

PREFIX kb: <http://knowledgebooks.com/ontology#>
SELECT ?subject ?object

WHERE {
?subject kb:containsCountry ?object .

}

We could have filtered on any other predicate, for instance containsPlace. Here is an-
other example using a match against a string literal to find all articles exactly matching
the text “Maryland.”

PREFIX kb: <http://knowledgebooks.com/ontology#>
SELECT ?subject
WHERE { ?subject kb:containsState "Maryland" . }

We can also match partial string literals against regular expressions:

PREFIX kb:
SELECT ?subject ?object

44

5.2. Example SPARQL SELECT Queries

WHERE {
?subject
kb:containsOrganization
?object FILTER regex(?object, "University") .

}

Prior to this last example query we only requested that the query return values for
subject and predicate for triples that matched the query. However, we might want
to return all triples whose subject (in this case a news article URI) is in one of the
matched triples. Note that there are two matching triples, each terminated with a
period:

PREFIX kb: <http://knowledgebooks.com/ontology#>
SELECT ?subject ?a_predicate ?an_object

WHERE {
?subject
kb:containsOrganization
?object FILTER regex(?object, "University") .

?subject ?a_predicate ?an_object .
}

DISTINCT
ORDER BY ?a_predicate ?an_object
LIMIT 10
OFFSET 5

When WHERE clauses contain more than one triple pattern to match, this is equiva-
lent to a Boolean “and” operation. The DISTINCT clause removes duplicate results.
The ORDER BY clause sorts the output in alphabetical order: in this case first by
predicate (containsCity, containsCountry, etc.) and then by object. The LIMIT mod-
ifier limits the number of results returned and the OFFSET modifier sets the number
of matching results to skip.

We are finished with our quick tutorial on using the SELECT query form. There are
three other query forms that I will now briefly1 cover:

• CONSTRUCT – returns a new RDF graph of query results

• ASK – returns Boolean true or false indicating if a query matches any triples

• DESCRIBE – returns a new RDF graph containing matched resources

1I almost always use just SELECT queries in applications.

45

5. The SPARQL Query Language

5.3. Example SPARQL CONSTRUCT Queries

A SPARQL CONSTRUCT query acts like a SELECT query in that part of an RDF
graph is matched. For CONSTRUCT queries, the matching subgraph is returned.

PREFIX kb: <http://knowledgebooks.com/ontology#>
CONSTRUCT {kb:StateOfMaryland kb:isDiscussedIn ?subject }
WHERE { ?subject kb:containsState "Maryland" . }

The output graph would only contain one RDF statement because only one of our test
news stories mentioned the state of Maryland:

kb:StateOfMaryland
kb:isDiscussedIn
<http://yahoo.com/10944/ts_nm/worldleaders_dc_1 /> .

5.4. Example SPARQL ASK Queries

SPARQL ask queries check the validity of an RDF statement (possibly including
variables) and returns ”yes” or ”no” as the query result. In a similar example to
the CONSTRUCT query, here I ask if there are any articles that discuss the state of
Maryland:

PREFIX kb: <http://knowledgebooks.com/ontology#>
ASK { ?subject kb:containsState "Maryland" }

5.5. Example SPARQL DESCRIBE Queries

Currently the SPARQL standard leaves the output from DESCRIBE queries as only
partly defined and implementaton specific. A DESCRIBE query is similar to a CON-
STRUCT query in that it returns information about resources in queries. The fol-
lowing example should return a graph showing information of all triples using the
resource matched by the variable ?subject:

PREFIX kb: <http://knowledgebooks.com/ontology#>
DECRIBE ?subject
WHERE { ?subject kb:containsState "Maryland" . }

46

5.6. Wrapup

5.6. Wrapup

This chapter ends the background material on Semantic Web Technologies. The re-
maining chapters in this book will be examples of gathering useful linked data and
using it in applications.

47

6. RDFS++ and OWL

There are three standard versions of OWL: Lite, Description Logic (DL), and Full.

Because more expressive versions of OWL require more computing resources (and
OWL Full may often require too many resources to be useful except for small prob-
lems) it is usually a good idea to use the minimum modeling constructs when develp-
ing a Semantic Web application.

OWL DL strikes a good balance between expressiveness and computability. OWL DL
reasoners are usually complete (that is, they provide all possible answers to queries).
The problem in many real-world applications is the unpredictability of how long a
query will take to execute.

While the three versions of OWL are standards there is an ad-hoc definition called
RDFS++ that is more expressive that RDF + RDFS but less expressive than OWL.
Since AllegroGraph supports RDFS++ but not OWL (without using external reason-
ing systems) we will not cover OWL constructs in this book unless they are imple-
mented in RDFS++.

6.1. Properties Supported In RDFS++

The unofficial version of RDFS/OWL called RDFS++ is a practical compromise be-
tween DL OWL and RDFS inferencing. AllegroGraph supports the following predi-
cates, the first six have already been discussed in Chapters 3 and 4:

• rdf:type – discussed in Chapter 3

• rdf:property – discussed in Chapter 3

• rdfs:subClassOf – discussed in Chapter 4

• rdfs:range – discussed in Chapter 4

• rdfs:domain – discussed in Chapter 4

• rdfs:subPropertyOf – discussed in Chapter 4

• owl:sameAs

49

6. RDFS++ and OWL

• owl:inverseOf

• owl:TransitiveProperty

We will now discuss owl:sameAs, owl:inverseOf, and owl:TransitiveProperty. We
will see in Chapters 7 and 8 interactive examples of these predicates.

6.1.1. owl:sameAs

If the same entity is represented by two distinct URIs owl:sameAs can be used to
assert that the URIs refer to the same entity. For example, two different knowledge
sources might might define different URIs in their own namespaces for President Bill
Clinton. Rather than translate data from one knowledge source to another it is simpler
to equate the two unique URIs. For example:

kb:BillClinton rdf:type kb:Person .
kb:BillClinton owl:sameAs mynews:WilliamClinton

Then the following can be verified using a RDFS++ or OWL DL capable reasoner:

mynews:WilliamClinton rdf:type kb:Person .

6.1.2. owl:inverseOf

We can use owl:inverseOf to declare that one property is the inverse of another.

:parentOf owl:inverseOf :childOf .
"John Smith" :parentOf "Nellie Smith" .

There is something new in this example: I am using a “default namespace” for :par-
entOf and :childOf. A default namespace is assumed to be application specific and
that no external software agents will need access to resources defined in the default
namespace.

Given the two previous RDF statements we can infer that the following is also true:

"Nellie Smith" :childOf "John Smith" .

50

6.2. RDF, RDFS, and RDFS++ Modeling Wrap Up

6.1.3. owl:TransitiveProperty

As its name implies owl:TransitiveProperty is used to declare that a property is
transitive as the following example shows:

kb:ancestorOf a owl:TransitiveProperty .
"John Smith" kb:ancestorOf "Nellie Smith" .
"Nellie Smith" kb:ancestorOf "Billie Smith" .

There is something new in this example: in N3 you can use a as shorthand for
rdf:type. Given the last three RDF statements we can infer that:

"John Smith" : kb:ancestorOf "Billie Smith" .

6.2. RDF, RDFS, and RDFS++ Modeling Wrap Up

You should now be getting the idea that RDF, RDFS, and RDFS++ modeling is quite
different than what you have experienced in object modeling in object oriented soft-
ware development and also different than modeling data using relational algebra.

The first difference lies in the ability to extend models by adding new properties and
new statements, usually without invalidating previous statements. For example, if
you have RDF data encoding information about a group of people using properties
like email address, name, and telephone number then you can also add statements
later using properties like ”knows person” or ”street address” without invalidating
previously defined information.

The second difference is the ability to infer information that is not explicitly encoded
as RDF triples.

51

Part II.

AllegroGraph Extended
Tutorial

53

7. SPARQL Queries Using
AllegroGraph APIs

We saw some example SPARQL queries in Chapter 5 where we expressed the queries
in text form. In this chapter we will work through SPARQL examples using snippets
of Lisp code and the AllegroGraph APIs. We will see more interactive examples that
are built on the examples in this chapter when we look at more reasoning examples
in Chapter 8 and AllegroGraph’s Prolog interface in Chapter 9.

The file sparql/news.nt was generated automatically by spidering a list of Reuters
news articles on Yahoo News and using the Open Calais entity extraction web ser-
vices that we will discuss in some detail in Chapter 11. This generated N-Triple file
does not use name space abreiviations as you can see from the first line in the file:

<http://news.yahoo.com/20080616/ts_nm/usa_flooding_dc_16 />
<http:://knowledgebooks.com/ontology#containsCity>
"Burlington" .

7.1. Using Namespaces

We have seen in earlier chapters how we use RDF triples from different sources that
we identify as belonging to different namespaces. The function register-namespace
is used to associate quick name abbreviations with namespace URIs.

AllegroGraph does not support reading the concise N3 format that we used in the last
chapter but we can make the N-Triple data file easier to work with by copying it to
the file news ns.nt and using edit macros to convert to using the namespaces:

(register-namespace
"kb"
"http:://knowledgebooks.com/ontology#")

(register-namespace
"test_news"
"http://news.yahoo.com/s/nm/20080616/ts_nm")

55

7. SPARQL Queries Using AllegroGraph APIs

7.2. Reading RDF Data From Files

We created new RDF triples programatically in Chapter 2. In this section we will see
how to read triple stores from disk.

In the last section we registered the namespace test news that is used in the first line
of the edited file news ns.nt:

!test_news:usa_flooding_dc_16
!kb:containsCity
"Burlington" .

The file sparql/sparql query.lisp contains all of the examples in this chapter. I encour-
age you to read through this chapter as well as the next two AllegroGraph tutorial
chapters with a Lisp listener window open and try all examples for yourself and then
experiment with the techniques we cover in the text.

We need to load this N-Triple file before performing any queries:

(load-ntriples "news.nt")

This load operation will fail if you have not defined the namespaces used in the file
with the function register-namespace.

7.3. Lisp APIs for Queires

If we try a query the default is to return RDF in XML format (and we agreed to not
use XML encodings!) If you are following this tutorial interactively, try evaluating
the following expression:

(sparql:run-sparql "
PREFIX kb: <http:://knowledgebooks.com/ontology#>
SELECT ?article_uri ?city_name WHERE {

?article_uri kb:containsCity ?city_name .
}")

Fortunately we can use optional arguments on the sparql:run-sparql function to get
a more convenient “Lisp like” return values for SPARQL queries. This example gets
the results as a list of hash tables:

56

7.3. Lisp APIs for Queires

(defvar *r1*
(sparql:run-sparql "

PREFIX kb: <http:://knowledgebooks.com/ontology#>
SELECT ?article_uri ?city_name WHERE {

?article_uri kb:containsCity ?city_name .
}"

:results-format :hashes))

(dolist (result *r1*)
(maphash
#’(lambda (key value)

(format t " key: ˜S˜% value: ˜S˜%˜%"
key value))

result))

The output from this code snippet is:

key: |?article_uri|
value: {http://news.yahoo.com/...}

key: |?city_name|
value: {Burlington}

;; etc.

The SPARQL ASK command checks to see if a given query produces any results.
The following example request a Lisp true/false return value to the question “Does
any article contain the city Chicago?”:

(sparql:run-sparql "
PREFIX kb: <http:://knowledgebooks.com/ontology#>
ASK {

?any_article kb:containsCity ’Chicago’
}"
:results-format :boolean)

There are many possible options for the :results-format keyword argument, includ-
ing:

• :sparql-xml – serializes the results as XML to output-stream

• :sparql-json – serializes the results as JSON data to output-stream

• :sparql-ttl – serializes the results as Turtle encoding to output-stream (Turtle is
a simplified version of N3, like N-Triples with namespaces)

57

7. SPARQL Queries Using AllegroGraph APIs

• :hashes – returns a list of hash tables (as seen in a previous example)

• :arrays – returns a list of arrays for each results

• :lists – returns a list of lists for each results

• :count – returns an integer for the number of results

At some loss of efficiency it is sometimes useful to match string values against regular
expressions; for example:

(sparql:run-sparql "
PREFIX kb: <http:://knowledgebooks.com/ontology#>
SELECT ?article_uri WHERE {

?article_uri kb:containsPerson ?person_name .
FILTER regex(?person_name, ’ˆ*Putin*’)

}"
:results-format :lists)

;; output:
(({http://news.yahoo.com/s/nm/20080616/ts_nm/worldleaders /}))

7.4. Wrap Up

You learned how to query RDF triples in a repository using the Lisp AllegroGraph
APIs in this chapter. We only considered triples that we explicitly added to the triple
store and in later chapters we will automate the collection of data from the Internet
and convert it to RDF and add it to a local triple store for reuse. Much of the power
of Semantic Web technologies in general and AllegroGraph in particular is the ability
to use triples that are inferred from RDFS without being explicitly created. This
capability is covered in the next chapter in addition to techniques for using different
data sources implemented using different schemas.

58

8. AllegroGraph Reasoning
System

In the last chapter we saw how SPARQL queries can be used to find specific data
in an RDF graph. So far we have only seen examples of finding data that has been
explicitly added to an RDF data repository.

However RDFS, RDFS++, and OWL reasoners can return results that are known
implicitly by using inference. We have already seen that AllegroGraph supports rea-
soning using the following predicates that can be used to infer new relationships that
are not explicitly stated in the RDF data stored in AllegroGraph:

• rdf:type – discussed in Chapter 3

• rdf:property – discussed in Chapter 3

• rdfs:subClassOf – discussed in Chapter 4

• rdfs:range – discussed in Chapter 4

• rdfs:domain – discussed in Chapter 4

• rdfs:subPropertyOf – discussed in Chapter 4

• owl:sameAs – discussed in Chapter 6

• owl:inverseOf– discussed in Chapter 6

• owl:TransitiveProperty – discussed in Chapter 6

8.1. Enabling RDFS++ Reasoning on a Triple
Store

We will look at the AllegroGraphs APIs and programming techniques for reasoning
in detail in this chapter. By default AllegroGraph triple stores do not support RDFS++
reasoning. You must enable RDFS++ reasoning functionality by:

59

8. AllegroGraph Reasoning System

(apply-rdfs++-reasoner :db *db*)

This function works via side effect: the specified data store is converted to support
inferencing. Since the default database *db* can be assumed, this can be shortened
to:

(apply-rdfs++-reasoner)

If you use multiple data stores at the same time you can use different inference support
for each. The remainder of this chapter uses reasoning to infer1 new information.

8.2. Inferring New Triples: rdf:type vs.
rdfs:subClassOf Example

In the following example, we define two triples and then perform a SPARQL query
that answers a question based on a new inferred triple that has not been explicitly
added to the triple store:

(add-triple !kb:man !rdfs:type !kb:person)
(add-triple !kb:sam !rdf:type !kb:man)

(sparql:run-sparql "
PREFIX kb: <http:://knowledgebooks.com/ontology#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
ASK {

kb:sam rdf:type kb:man
}"
:results-format :boolean)

This query returns a Lisp true value T. You might think that since kb:man is declared
of rdf:type kb:person that the following query would return a true value:

(add-triple !kb:man !rdf:type !kb:person)
(add-triple !kb:sam !rdf:type !kb:man)

1Implementations of RDF triple stores that support RDFS, RDFS++, or OWL reasoning can implement
inferred triples in different ways. One approach is to “pre-calculate” inferred triples using forward
chaining inference; this approach is used by the Sesame library. A different approach used in Allegro-
graph is to infer triples at query time. The results should (hopefully) be the same.

60

8.3. Using Inverse Properties

(sparql:run-sparql "
PREFIX kb: <http:://knowledgebooks.com/ontology#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
ASK {

kb:sam rdf:type kb:person
}"
:results-format :boolean)

This, however, returns a Lisp false value NIL. To get what you probably thought was
the expected subclass behavior we can use rdfs:subClassOf:

(add-triple !kb:man !rdfs:subClassOf !kb:person)

Now the last query returns a true (Lisp T) value.

8.3. Using Inverse Properties

Properties define a one-way relationship between resources. Sometimes a property
like ”husband of” has an inverse property like ”wife of” so when we say that Mark is
the husband of Carol we would like an automatic logical inference that Carol is the
wife of Mark is true also.

(require :agraph)
(in-package :db.agraph.user)agraph.user)
(create-triple-store "/tmp/rdfstore_2")
(register-namespace "kb" "http:://knowledgebooks.com/ontology#")
(apply-rdfs++-reasoner)
(enable-!-reader)
(add-triple !kb:Mark !kb:husband-of !kb:Carol)
(add-triple !kb:wife-of !owl:inverseOf !kb:husband-of)

We can now infer who wife-of relationships:

(sparql:run-sparql "
PREFIX kb: <http:://knowledgebooks.com/ontology#>
SELECT ?y ?x WHERE { ?y kb:wife-of ?x }")

Since I did not specify the output data format, the default is RDF encoded as XML:

61

8. AllegroGraph Reasoning System

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">

<head>
<variable name="y"/>
<variable name="x"/>

</head>
<results>

<result>
<binding name="y">

<uri>http:://knowledgebooks.com/ontology#Carol</uri>
</binding>
<binding name="x">

<uri>http:://knowledgebooks.com/ontology#Mark</uri>
</binding>

</result>
</results>

</sparql>

I find other output formats generally easier to use; for example specifying :results-
format :lists yields:

(({Carol} {Mark}))

and specifying :results-format :hashes like:

(sparql:run-sparql "
PREFIX kb: <http:://knowledgebooks.com/ontology#>
SELECT ?y ?x WHERE { ?y kb:wife-of ?x }" :results-format :hashes)

will yield:

Specifying an output format of :results-format :sparql-json yields:

{
"head" : {

"vars" : ["y", "x"]
},
"results" : {

"bindings" : [

62

8.4. Using the Same As Property

{
"y":{"type":"uri",

"value":
"http:://knowledgebooks.com/ontology#Carol"},

"x":{"type":"uri",
"value":

"http:://knowledgebooks.com/ontology#Mark"}
}

]
}

}

Yet another output option is :results-format :alists

8.4. Using the Same As Property

It is often useful to make an RDF statement that two different resources are equivalent
as in this example:

(add-triple !kb:Mark !kb:name !kb:"Mark Watson")
(register-namespace "test_news" "http://news.yahoo.com/s/nm/20080616/ts_nm")
(add-triple !test_news:Mark !kb:height !"6 feet 4 inches")
(add-triple !kb:mark !owl:sameAs !kb:test_news:Mark)
(apply-rdfs++-reasoner)

You will be surprised to see only the following results:

(({name} {Mark Watson})
({sameAs} {test_news:Mark}))

With just RDFS++ reasoning, the height of Mark will not be inferred. It would have
been using a full OWL reasoner.

8.5. Using the Transitive Property

If we start by making a few statements about family relationships:

(add-triple !kb:relativeOf !rdf:type !owl:TransitiveProperty)

63

8. AllegroGraph Reasoning System

(add-triple !kb:Mark !kb:relativeOf !kb:Ron)
(add-triple !kb:Ron !kb:relativeOf !kb:Julia)
(add-triple !kb:Julia !kb:relativeOf !kb:Ken)

And run a query like:

(sparql:run-sparql "
PREFIX kb: <http:://knowledgebooks.com/ontology#>
SELECT ?relative WHERE { kb:Mark kb:relativeOf ?relative }"
:results-format :sparql-json))

If you forget to enable reasoning then you will get results just using RDF + RDFS
that you do not expect:

{
"head" : {

"vars" : ["relative"]
},
"results" : {

"bindings" : [
{

"relative":{"type":"uri",
"value":

"http:://knowledgebooks.com/ontology#Ron"}
}

]
}

}

We need to enable reasoning with:

(apply-rdfs++-reasoner)

and we then get all expected relatives listed:

{
"head" : {

"vars" : ["relative"]
},
"results" : {

"bindings" : [

64

8.6. Wrap Up

{
"relative":{"type":"uri",

"value":
"http:://knowledgebooks.com/ontology#Ron"}

},
{

"relative":{"type":"uri",
"value":

"http:://knowledgebooks.com/ontology#Ken"}
},
{

"relative":{"type":"uri",
"value":

"http:://knowledgebooks.com/ontology#Julia"}
}

]
}

}

8.6. Wrap Up

We saw in the ”same as” example that RDFS++ does not always make inferences that
we might expect, so it is best to test reasoning that you depend on for an application
with a small example. At this point, you know how to use AllegroGraph and Lisp
to write your ow applications. I am going to take a short tangent in the next chapter
to show you a short-hand Prolog notation for using AllegroGraph embedded in Lisp
applications.

65

9. AllegroGraph Prolog Interface

This chapter contains optional material about Franz’s proprietary Prolog query in-
terface to AllegroGraph RDF stores. I will not use the Prolog interface in examples
later in this book because I wanted to stress standard technologies like SPARQL for
accessing RDF data. However, the Prolog interface is very convenient to use and if
you will be using AllegroGraph in your work projects I suggest that you take the time
to learn it.

The documentation for the Prolog interface1 is Franz’s tutorial and reference web
pages. I am going to give you a brief introduction in this chapter and you can later re-
view Franz’s documentation if you choose to use the Prolog interface in your projects.

I suggest that you open a Lisp repl and follow along with the examples that are in the
file quick start allegrograph lisp embedded/prolog.lisp. We start by opening a new
triple store and loading some example RDF N-Triple data to experiment with:

(require :agraph)
(in-package :db.agraph.user)

(enable-!-reader) ; enable the ! reader macro

(create-triple-store "/tmp/rdfstore_prolog_1"
:if-exists :supersede)

(register-namespace
"kb"
"http://knowledgebooks.com/ontology/#")

(load-ntriples
#p"quick_start_allegrograph_lisp_embedded/sample_news.nt")

I am assuming that you started the Lisp repl in the main examples directory for this
book so adjust the path in the load-ntriples statement if you started the repl in a
different location. I am going to show you a query example and then explain the
function of the Prolog operators in the example query:

1The Prolog interface is based on Peter Norvig’s Prolog implementation written in Common Lisp.

67

9. AllegroGraph Prolog Interface

(select (?s ?p ?o)
(q- ?s ?p ?o))

This query contains no conditions so every triple is displayed. In Prolog, terms start-
ing with a ? are variables that will later get value bindings. The select Lisp macro
is used to perform a query and return results in a convenient Lisp list notation. Each
q- term in a query is used to define variables and optionally conditions. You will see
the close correspondence with SPARQL queries as we look at more examples. The
output showing all N-Triples in the example data file looks like:

(("http://kbsportal.com/oak_creek_flooding /"
"http://knowledgebooks.com/ontology/#storyType"
"http://knowledgebooks.com/ontology/#disaster")
("http://kbsportal.com/oak_creek_flooding /"
"http://knowledgebooks.com/ontology/#summary"
"Oak Creek flooded last week affecting 5 businesses")
("http://kbsportal.com/bear_mountain_fire /"
"http://knowledgebooks.com/ontology/#storyType"
"http://knowledgebooks.com/ontology/#disaster")
("http://kbsportal.com/bear_mountain_fire /"
"http://knowledgebooks.com/ontology/#summary"
"The fire on Bear Mountain was caused by lightening")
("http://kbsportal.com/trout_season /"
"http://knowledgebooks.com/ontology/#storyType"
"http://knowledgebooks.com/ontology/#sports")
("http://kbsportal.com/trout_season /"
"http://knowledgebooks.com/ontology/#storyType"
"http://knowledgebooks.com/ontology/#recreation")
("http://kbsportal.com/trout_season /"
"http://knowledgebooks.com/ontology/#summary"
"Trout fishing season started last weekend")
("http://kbsportal.com/jc_basketball /"
"http://knowledgebooks.com/ontology/#storyType"
"http://knowledgebooks.com/ontology/#sports"))

We can refine this example query by only requesting news stories that have a sum-
mary:

(select (?news_uri ?summary)
(q- ?news_uri !kb:summary ?summary))

Now the results are:

68

(("http://kbsportal.com/oak_creek_flooding /"
"Oak Creek flooded last week affecting 5 businesses")

("http://kbsportal.com/bear_mountain_fire /"
"The fire on Bear Mountain was caused by lightening")

("http://kbsportal.com/trout_season /"
"Trout fishing season started last weekend"))

If we are only interested in news stories of type disaster, then we can add another
condition filtering against the story type:

(select (?news_uri ?summary)
(q- ?news_uri !kb:summary ?summary)
(q- ?news_uri !kb:storyType !kb:disaster))

Now we only get two results:

(("http://kbsportal.com/oak_creek_flooding /"
"Oak Creek flooded last week affecting 5 businesses")

("http://kbsportal.com/bear_mountain_fire /"
"The fire on Bear Mountain was caused by lightening"))

The Franz Prolog interface tutorial and reference web pages also show examples of
performing RDFS++ type inference and further Prolog techniques. Since we will not
use the Prolog interface in application examples in this book I refer you to the Franz
documentation if you are interested in using the Prolog interface.

69

Part III.

Portable Common Lisp
Utilities for Information

Processing

71

10. Linked Data and the World
Wide Web

It has been a decade since Tim Berners-Lee started writing about “version 2” of the
World Wide Web: the Semantic Web. His new idea was to augment HTML anchor
links with typed links using RDF data. As we have seen in detail in the last several
chapters, RDF is encoded as data triples with the parts of each triple identified as the
subject, predicate, and object. The predicate identifies the type of link between the
subject and the object in a RDF triple.

You can think of a single RDF graph as being hosted in one web service, SPARQL
endpoint service, or a downloadable set of RDF files. Just as the value of the web
is greatly increased with relevant links between web pages, the value of RDF graphs
is increased when they contain references to triples in other RDF graphs. In theory,
you could think of all linked RDF data that is reachable on the web as being a single
graph but in practice graphs with billions of nodes are difficult to work with. That
said, handling very large graphs is an active area of research both in university labs
and in industry.

URIs refer to things, acting as a unique identifier. An important idea is that URIs
in linked data sources can also be ”dereferenceable:” a URI can serve as a unique
identifier for the Semantic Web and if you follow the link you can find HTML, RDF or
any document type that might better inform both human readers and software agents.
Typically, a dereferenceable URI is ”followed” by using the HTTP protocol’s GET
method.

The idea of linking data resources using RDF extends the web so that both human
readers and software agents can use data resources. In Tim Berners-Lee’s 2009 TED
talk on Linked Data he discusses the importance of getting governments, companies
and individuals to share Linked Data and to not keep it private. He makes the great
point that the world has many challenges (medicine, stabilizing the economy, energy
efficiency, etc.) that can benefit from unlocked Linked Data sources.

73

10. Linked Data and the World Wide Web

10.1. Linked Data Resources on the Web

There are already many useful public Linked Data sources, with more being devel-
oped. Some examples are:

1. DBpedia contains the ”info box” data automatically collected from Wikipedia
(see Chapter 14).

2. FOAF (Friend of a Friend) Ontology for specifying information about people
and their social and business relationships.

3. GeoNames (http://www.geonames.org/) links place names to DBpedia (see Chap-
ter 15).

4. Freebase (http://freebase.com) is a community driven web portal that allows
people to enter facts as structured data. It is possible to query Freebase and get
results as RDF. (See Chapter 13).

We have already used the FOAF RDFS definitions in examples in this book1 and we
will DBpedia, GeoNames, and Freebase in later chapters.

10.2. Publishing Linked Data

Leigh Dodds and Ian Davis have written an online book ”Linked Data Patterns”2 that
provides useful patterns for defining and using Linked Data. I recommend their book
as a more complete reference than this short chapter.

I have used a few reasonable patterns in this book for defining RDF properties, some
examples being:

<http://knowledgebooks.com/ontology/containsPlace>
<http://knowledgebooks.com/ontology/containsCity>
<http://knowledgebooks.com/rdf/discusses/person>
<http://knowledgebooks.com/rdf/discusses/place>

It is also good practice to name resources automatically using a root URI followed by
a unique ID based on the data source; for example: a database row ID or a Freebase
ID.

<http://knowledgebooks.com/rdf/datasource/freebase/20121>

1As an example, for people’s names, addresses, etc.
2Available under a Creative Commons License at http://patterns.dataincubator.org/book/

74

10.3. Will Linked Data Become the Semantic Web?

<http://knowledgebooks.com/rdf/datasource/psql/ \\
testdb/testtable/21198>

For all of these examples (properties and resources) it would be good practice to make
these URIs dereferenceable.

10.3. Will Linked Data Become the Semantic
Web?

There has not been much activity building large systems using Semantic Web tech-
nologies. That said, I believe that RDF is a natural data format to use for making
statements about data found on the web and I expect the use of RDF data stores
to increase. The idea of linked data seems like a natural extension: making URIs
dereferenceable lets people follow URIs and get additional information on commonly
used RDFS properties and resources. I am interested in Natural Language Process-
ing (NLP) and it seems reasonable to expect that intelligent agents can use natural
(human) language dereferenced descriptions of properties and resources.

10.4. Linked Data Wrapup

I have defined the relevant terms for using Linked Data in this short chapter and
provided references for further reading and research. Much of the rest of this book is
comprised of Linked Data application examples using some utilities for information
extraction and processing with existing data sources.

75

11. Common Lisp Client Library
for Open Calais

The Open Calais web services are available for free use with some minor limi-
tations. This service is also available for a fee with additional functionality and
guaranteed service levels. We will use the free service in this chapter. Although I
made this chapter self-contained, you may also want to read the documentation at
www.opencalais.com.

You will need to apply for a free developers key. On my development systems I define
an environment variable for the value of my key using (the key shown is not a valid
key, by the way):

export OPEN_CALAIS_KEY=po2eq112hkf985f3k

The example source files are found in lisp practical semantic web/opencalais:

• load.lisp – loads and runs the demo

• opencalais-lib.lisp – performs web service calls to find named entities in text

• opencalais-data-store.lisp – maintains an RDF data store for named entities

• test-opencalais.lisp – demo test program

11.1. Open Calais Web Services Client

The Open Calais web services return RDF payloads serialized as XML data that you
can print out1 if you want to see what it looks like.

For our purposes, we will not use the returned XML data and instead parse the com-
ment block to extract named entities that Open Calais indentifies. There is a possibil-
ity in the future that the library in this section may need modification if the format of
this comment block changes (it has not changed in several years).

1Add a line of debug printout for the response returned by the web service call.

77

11. Common Lisp Client Library for Open Calais

I will not list all of the code in opencalais-lib.lisp but we will look at some of it. I start
by defining two constant values, the first depends on your setting of the environment
variable OPEN CALAIS KEY:

(defvar *my-opencalais-key* (sys::getenv "OPEN_CALAIS_KEY"))

(defvar *PARAMS*
(concatenate ’string

"¶msXML="
(MAKE-ESCAPED-STRING

"<c:params ... >.....</c:params>")))

The web services client function is fairly trivial: we just need to make a RESTful
web services call and extract the text form the comment block, parsing out the named
entities and their values. Before we look at some code, we will jump ahead and look
at an example comment block; understanding the input data will make the code easier
to follow:

<!--Relations: PersonCommunication,
PersonPolitical,
PersonTravel

Company: IBM, Pepsi
Country: France
Person: Hiliary Clinton, John Smith
ProvinceOrState: California-->

We will use the net.aserve.client:do-http-request function to make the web service
call after setting up the RESTful arguments:

(defun entities-from-opencalais-query (query
&aux url results index1 index2
lines tokens hash)

(setf hash (make-hash-table :test #’equal))
(setf url

(concatenate ’string
"http://api.opencalais.com/enlighten"
"/calais.asmx/Enlighten?"
"licenseID="

my-opencalais-key
"&content="
(MAKE-ESCAPED-STRING query)

78

11.1. Open Calais Web Services Client

PARAMS))
(setf results (net.aserve.client:do-http-request url))

The value of results will be URL-encoded text and for our purposes there is no need
to decode the text returned from the web service call:

(setq index1 (search "terms of service.-->" results))
(setq index1 (search "<!--" results :start2 index1))
(setq index2 (search "-->" results :start2 index1))
(setq results (subseq results (+ index1 7) index2))
(setq lines

(split-sequence:split-sequence #\Newline results))
(dolist (line lines)

(setq index1 (search ": " line))
(if index1

(let ((key (subseq line 0 index1))
(values (split-sequence:split-sequence ", "

(subseq line (+ index1 2)))))
(if (not (string-equal "Relations" key))

(setf (gethash key hash) values)))))
(maphash
#’(lambda (key val)

(format t "key: ˜S val: ˜S˜%" key val))
hash)

hash)

Before using this utility function in the next section to fetch data for an RDF data
store we will look at a simple test:

(entities-from-opencalais-query
"Senator Hiliary Clinton spoke with the president
of France. Clinton and John Smith talked on
the aiplane going to California. IBM and Pepsi
contributed to Clinton’s campaign.")

The debug printout in this call is:

key: "Country" val: ("France")
key: "Person" val: ("Hiliary Clinton" "John Smith")
key: "Company" val: ("IBM" "Pepsi")
key: "ProvinceOrState" val: ("California")

79

11. Common Lisp Client Library for Open Calais

11.2. Storing Entity Data in an RDF Data Store

We will use the utilities developed in the last section for using the Open Calais web
services in this section to populate an RDF data store. You can find the utilities
developed in this section in the source file opencalais-data-store.lisp. We start by
making sure that the AllegroGraph libraries are loaded and we define a namespace
that we will use for examples in the rest of this chapter:

;; Use the opencalais-lib.lisp utilities to create
;; an RDF data store. Assume that a AG RDF
;; repository is open.

(require :agraph)
(in-package :db.agraph.user)

(register-namespace
"kb"
"http:/knowledgebooks.com/rdfs#")

To avoid defining a global variable for a hash table we define one locally inside a
closure that also defines the only function that needs read access to this hash table:

(let ((hash (make-hash-table :test #’equal)))
(setf (gethash "Country" hash) !kb:containsCountry)
(setf (gethash "Person" hash) !kb:containsPerson)
(setf (gethash "Company" hash) !kb:containsCompany)
(setf (gethash "ProvinceOrState" hash)

!kb:containsState)
(setf (gethash "Product" hash) !kb:containsProduct)
;; utility function for getting a URI for a
;; predicate name:
(defun get-rdf-predicate-from-entity-type (entity-type)
(let ((et (gethash entity-type hash)))

(if (not et)
(progn

;; just use a string literal if there is
;; no entry in the hash table:
(setf et entity-type)
(format t

"Warning: entity-type ˜S not defined
in opencalais-data-store.lisp˜%"
entity-type)))

et)))

80

11.3. Testing the Open Calais Demo System

Function get-rdf-predicate-from-entity-type is used to map string literals to specific
predicates defined in the knowledgebooks.com namespace. The following function is
the utility for processing the text from documents and generating multiple triples that
all have their subject equal to the value of the unique URI for the original document.

(defun add-entities-to-rdf-store (subject-uri text)
"subject-uri if the subject for triples that this
function defines"
(maphash
#’(lambda (key val)

(dolist (entity-val val)
(add-triple
subject-uri
(get-rdf-predicate-from-entity-type key)
(literal entity-val))))

(entities-from-opencalais-query text)))

If documents are not plain text (for example a word processing file or a HTML web
page) then applications using the utility code developed in this chapter need to extract
plain text. The code in this section is intended to give you ideas for your own appli-
cations; you would at least substitute your own namespace(s) for your application.

11.3. Testing the Open Calais Demo System

The source file test-opencalais.lisp contains the examples for this section:

(require :agraph)
(in-package :db.agraph.user)

(create-triple-store "/tmp/rdfstore_1")

We start by using the utility function defined in the last section to find all named
entities in sample text and create triples in the data store:

(add-entities-to-rdf-store
!<http://newsdemo.com/1234>
"Senator Hiliary Clinton spoke with the president
of France. Clinton and John Smith talked on the
aiplane going to California. IBM and Pepsi
contributed to Clinton’s campaign.")

81

11. Common Lisp Client Library for Open Calais

We can print all triples in the data store:

(print-triples (get-triples-list) :format :concise)

and output is:

<1: http://newsdemo.com/1234 kb:containsCountry France>
<2: http://newsdemo.com/1234 kb:containsPerson

Hiliary Clinton>
<3: http://newsdemo.com/1234 kb:containsPerson

John Smith>
<4: http://newsdemo.com/1234 kb:containsCompany IBM>
<5: http://newsdemo.com/1234 kb:containsCompany Pepsi>
<6: http://newsdemo.com/1234 kb:containsState California>

This example showed just adding triples generated from a single document. If a large
number of documents are processed then queries like the following might be useful:

(print-triples
(get-triples-list
:p (get-rdf-predicate-from-entity-type "Company")
:o (literal "Pepsi"))
:format :concise)

producing this output:

<5: http://newsdemo.com/1234 kb:containsCompany Pepsi>

Here we identify all documents that mention a specific company.

11.4. Open Calais Wrap Up

Since AllegroGraph supports indexing and search of any text fields in triples, the
combination of using triples to store specific entities in a large document collection
with full search, AllegroGraph can be a effective tool to mange large document repos-
itories.

“Documents” can be any source of text identified with a unique URI: web pages,
word processing documents, blog entries, etc.

82

11.4. Open Calais Wrap Up

I consider Open Calais to be state-of-the-art in its ability to accurately determine
entities in input text. In the next chapter I will show you my own Common Lisp
library that I use when I do not want to depend on accessing a third party web service
like Open Calais.

83

12. Common Lisp Client Library
for Natural Language
Processing

We used the Open Calais web services in Chapter 11 to identify proper names in text
and we used this information to create RDF data linking information sources with
people and places mentioned in the text. I will introduce you to a subset of my own
library for natural language processing (NLP) in this chapter.

12.1. KnowledgeBooks.com Natural Language
Processing Library

I started developing the KnowledgeBooks.com NLP library as a commercial product
in the 1990s and continued to improve it until about 2008 when I started using the
Open Calais web services for most of my own work and research. While the Open
Calais system produces more accurate results than my own library, I still find it use-
ful to use my own library so I took some effort to clean up my old code (actually
removing most of it, leaving the parts that you may find most useful and easiest to
understand.) for inclusion in the software distribution for this book.

The code I discuss in this chapter is a subset of my library. I wanted to include only
the functionality to replace Open Calais.

I will give you a quick tutorial in this chapter on using the major APIs in my library.
If you are interested in the code itself then you can browse through the code. I set
up my library to load using the ASDF package manager. If you are running a Lisp
repl from the knowledgebooks nlp subdirectory then you can load the library directly
using:

(asdf:operate ’asdf:load-op :kbnlp)
(in-package :kbnlp)

If you are working in the top level examples directory for this book then load my
library using:

85

12. Common Lisp Client Library for Natural Language Processing

(push "knowledgebooks_nlp/" asdf:*central-registry*)
(asdf:operate ’asdf:load-op :kbnlp)
(in-package :kbnlp)

If you want to use my library from a different directory location you will need to push
the path of the knowledgebooks nlp directory to asdf:*central-registry*.1

The file knowledgebooks nlp/example.lisp contains sample code for using the library:

(defvar x
(kbnlp:make-text-object "President ..."))

A text-object Lisp struct contains attributes for a summary of the text, human name
and place name entities found in the text, part of speech tags, and topic tags describing
the input text:

(defvar x
(kbnlp:make-text-object "President ..."))

With most of the output not shown for brevity, here is the output after loading the file
example.lisp:

#S(TEXT :URL "http://knowledgebooks.com/docs/001"
:TITLE "test doc 1"
:SUMMARY "Often those amendments are ..."
:CATEGORY-TAGS (("news_politics.txt" 0.38268)

("news_economy.txt" 0.31182)
("news_war.txt" 0.20174))

:HUMAN-NAMES ("President Bill Clinton")
:PLACE-NAMES ("Florida")
:TEXT #("President" "Bill" "Clinton" "ran" ...)
:TAGS #("NNP" "NNP" "NNP" "VBD" "IN" "NN" ...))

The part of speech tags are defined in my FastTag project that you can download from
my Open Source web page makrwatson.com/opensource.

1The data file loading code depends on the exact directory name knowledgebooks nlp so do not change
it.

86

12.2. KnowledgeBooks Natural Language Processing Library Wrapup

12.2. KnowledgeBooks Natural Language
Processing Library Wrapup

I will be using my library in Chapter 16 to process input text sources and create RDF
triples containing semantic data for input text. Chapter 16 contains example code for
effectively using my library in larger systems written in Lisp.

There is some initialization time overhead using my library: on my laptop it takes
about five seconds to load all of the linguistic data files2 included with the book
example code but after this initial setup my library is very fast.3

2I provide small linguistic example data files with the example code for this book that should be sufficient
for experimenting with my library and use in most applications. For my own research and work for my
consulting customers I use a large linguistic data set that takes about thirty seconds to load.

3It takes about 3 milliseconds to process 100 words of input text on my MacBook.

87

13. Common Lisp Client Library
for Freebase

Freebase is a public data source created by the MetaWeb Corporation. Freebase is
similar to Wikipedia because users of Freebase add data that is linked to other data
in Freebase. If you are not already familiar with Freebase then I suggest you spend
some time experimenting with the web interface (http://freebase.com) before work-
ing through this chapter. As a developer make sure that you eventually look at the
developer documentation at http://www.freebase.com/docs/data because I will only
the aspects of Freebase that I need for the example applications in this book.

13.1. Overview of Freebase

Objects stored in Freebase have a unique object ID assigned to them. It makes sense
to use this ID as part of a URI when generating URIs to use as RDF resources. We
talked about dereferenceable URIs in Section 3.3. The RDF for the object represent-
ing me on Freebase can be obtained by dereferencing:

http://rdf.freebase.com/rdf/ \\
guid.9202a8c04000641f80000000146fb902

Objects in Freebase are tagged with one or more types. For example, if I search for
myself and fetching HTML output using a URI like:

http://www.freebase.com/search?query=Mark+Watson+consultant

then I see that I am assigned to three types: Person, Author, and Software Developer.
If I want JSON formatted results then I can use:

http://www.freebase.com/api/service/search?query= \\
Mark+Watson+author

A full reference of API arguments is http://www.freebase.com/view/en/api service search
and Table 13.1 shows the arguments that I most frequently use.

89

13. Common Lisp Client Library for Freebase

Table 13.1.: Subset of Freebase API Arguments
Argument Argument type Format Default value
query required string
type optional string /location/citytown
limit optional integer 20
start optional integer 0

The best way to access Freebase is to use the MQL Query Language. However,
Freebase now has an RDF interface1 and we will use this interface in this chapter.

Please note that the Java, Clojure, JRuby, and Scala edition of this book wraps the
Java Freebase MQL client library for full access to Freebase. You can refer to the
other edition of this book for more detailed information concerning Freebase.

http://rdf.freebase.com/

The RDF interface can fetch all RDF triples for a given Freebase RDF resource iden-
tifier. As an example, here is the identifier for the Freebase topic about me:

http://rdf.freebase.com/ns/en.mark_louis_watson

The returned triples are (most not shown for brevity):2

<http://rdf.freebase.com/ns/en.mark_louis_watson>
<http://rdf.freebase.com/ns/people.person.date_of_birth>
"1951" .

<http://rdf.freebase.com/ns/en.mark_louis_watson>
<http://rdf.freebase.com/ns/common.topic.alias>
"Mark Watson"@en .

<http://rdf.freebase.com/ns/en.mark_louis_watson>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://rdf.freebase.com/ns/computer.software_developer> .

<http://rdf.freebase.com/ns/en.mark_louis_watson>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://rdf.freebase.com/ns/book.author> .

<http://rdf.freebase.com/ns/en.mark_louis_watson>
<http://creativecommons.org/ns#attributionName>
"Source: Freebase - The World’s database" .

1http://blog.freebase.com/2008/10/30/introducing the rdf service/
2Output edited to fit page width.

90

13.2. Accessing Freebase from Common Lisp

<http://rdf.freebase.com/ns/en.mark_louis_watson>
<http://rdf.freebase.com/ns/people. \\

person.education>
<http://rdf.freebase.com/ns/m.0b6_ggq> .

<http://rdf.freebase.com/ns/m.0b6_ggq>
<http://rdf.freebase.com/ns/education. \\

education.institution>
<http://rdf.freebase.com/ns/en.university_of_california_santa_barbara> .

You can use the Freebase RDF browser3 to find Freebase RDF resource identifiers
using free text search.

13.2. Accessing Freebase from Common Lisp

I created a short file freebase client/test.lisp that shows you how to create an MQL
query, encode it as JSON, and make a web service call to Freebase. For this example
I want to create JSON data that looks like:

[{
"name": "Mark Louis Watson",
"type": []

}]

The file test.lisp creates this JSON query request and makes a web service call:

(require :aserve)
(in-package :net.aserve.client)

(push "../utils/yason/" asdf:*central-registry*)
(asdf:operate ’asdf:load-op ’yason)

(defvar mql-url
"http://api.freebase.com/api/service/mqlread?query=")

(defvar *h* (make-hash-table :test #’equal))
(defvar *h2* (make-hash-table :test #’equal))
(setf (gethash "name" *h2*) "Mark Louis Watson")
(setf (gethash "type" *h2*) (make-array 0))
(setf (gethash "query" *h*) (list *h2*))

3http://rdf.freebase.com/

91

13. Common Lisp Client Library for Freebase

(defvar *hs*
(with-output-to-string
(sstrm)
(json:encode *h* sstrm)))

(defvar *s*
(concatenate ’string

mql-url
(net.aserve.client::uriencode-string *hs*)))

(defvar *str-results* (do-http-request *s*))

(format t "Results:˜%˜%˜A˜%˜%" *str-results*)

The output is a string containing encoded JSON data and looks like:

{
"code": "/api/status/ok",
"result": [

{
"name": "Mark Louis Watson",
"type": [

"/common/topic",
"/people/person",
"/book/author",
"/computer/software_developer"

]
}

],
"status": "200 OK",
"transaction_id": "cache;cache04.p01;2010-10-23T22"

}

This code snippet gets the result as Lisp data:

(defvar *results* (json:parse *str-results*))

(maphash
#’(lambda (key val)

(format t "key: ˜A value: ˜A˜%" key val))
(car (gethash "result" *results*)))

92

13.3. Freebase Wrapup

The output looks like:

key: name value: Mark Louis Watson
key: type value: (/common/topic /people/person

/book/author
/computer/software_developer)

13.3. Freebase Wrapup

Freebase is a useful source of semantic data and this chapter introduced you to ac-
cessing Freebase in general and from Lisp client code. One issue with Freebase is that
it contains sparse data: some topics are well covered and others are not. If you use
Freebase in your Lisp applications start with the interactive query editor4 to explore
the available data and get valid MQL queries for the information you want. Once
you have valid MQL queries then use the Lisp code example from the last section to
convert your MQL queries to JSON data and call the Freebase web services.

4http://www.freebase.com/app/queryeditor

93

14. Common Lisp Client Library
for DBpedia

This Chapter will cover the development of a general purpose SPARQL client library
and also the use of this library to access the DBpedia SPARQL endpoint.

DBpedia is a mostly automatic extraction of RDF data from Wikipedia using the
metadata in Wikipedia articles. You have two alternatives for using DBpedia in your
own applications: using the public DBpedia SPARQL endpoint web service or down-
loading all or part of the DBpedia RDF data and loading it into your own RDF data
store (e.g., AllegroGraph or Sesame).

The public DBpedia SPARQL endpoint URI is http://dbpedia.org/sparql. For the
purpose of the examples in this book we will simply use the public SPARQL endpoint
but for serious applications I suggest that you run your own endpoint using the subset
of DBpedia data that you need..

The public DBpedia SPARQL endpoint is run using the Virtuoso Universal Server
(http://www.openlinksw.com/). If you want to run your own your own DBpedia
SPARQL endpoint you can download the RDF data files from http://wiki.dbpedia.org
and use the open source version of Virtuoso, Sesame, AllegroGraph, or any other
RDF data store that supports SPARQL queries.

14.1. Interactively Querying DBpedia Using the
Snorql Web Interface

When you start using DBpedia, a good starting point is the interactive web application
that accepts SPARQL queries and returns results. The URL of this service is:

http://dbpedia.org/snorql

Figure 14.1 shows the DBpedia Snorql web interface showing the results of one of
the sample SPARQL queries used in this section.

95

14. Common Lisp Client Library for DBpedia

Figure 14.1.: DBpedia Snorql Web Interface

A good way to become familiar with the DBpedia ontologies used in these examples
is to click the links for property names and resources returned as SPARQL query
results, as seen in Figure 14.1. Here are three different sample queries that you can
try:

PREFIX dbo: <http://dbpedia.org/ontology/>
SELECT ?s ?p WHERE {

?s ?p <http://dbpedia.org/resource/Berlin> .
}
ORDER BY ?name

PREFIX dbo: <http://dbpedia.org/ontology/>
SELECT ?s ?p WHERE {

?s dbo:state ?p .
}
limit 25

PREFIX dbpedia2: <http://dbpedia.org/property/>

96

14.2. Interactively Finding Useful DBpedia Resources Using the gFacet Browser

PREFIX dbo: <http://dbpedia.org/ontology/>
SELECT ?location ?name ?state_name WHERE {

?location dbo:state ?state_name .
?location dbpedia2:name ?name .
FILTER (LANG(?name) = ’en’) .

}
limit 25

The http://dbpedia.org/snorql SPARQL endpoint web application is a great resource
for interactively exploring the DBpedia RDF datastore. We will look at an alternative
browser in the next section.

14.2. Interactively Finding Useful DBpedia
Resources Using the gFacet Browser

The gFacet browser allows you to find RDF resources in DBpedia using a search
engine. After finding matching resources you can then dig down by clicking on indi-
vidual search results.

You can access the gFacet browser using this URL:

http://www.gfacet.org/dbpedia/

Figures 14.2 and 14.3 show a search example where I started by searching for ”Ari-
zona parks,” found five matching resources, clicked the first match ”Parks in Ari-
zona,” and then selected ”Dead Horse State Park.”1

14.3. The lookup.dbpedia.org Web Service

We will use Georgi Kobilarov’s DBpedia lookup web service to perform free text
search queries to find data in DBpedia using free text search. If you have a good idea
of what you are searching for and know the commonly used DBpedia RDF properties
then using the SPARQL endpoint is convenient. However, it is often simpler to just
perform a keyword search and this is what we will use the lookup web service for. We
will later see the implementation of a client library in Section ??. You can find docu-
mentation on the REST API at http://lookup.dbpedia.org/api/search.asmx?op=KeywordSearch.
Here is an example URL for a REST query:

1This is a park near my home where I go kayaking and fishing.

97

14. Common Lisp Client Library for DBpedia

Figure 14.2.: DBpedia Graph Facet Viewer

Figure 14.3.: DBpedia Graph Facet Viewer after selecting a resource

98

14.4. Using the AllegroGraph SPARQL Client Library to access DBpedia

http://lookup.dbpedia.org/api/search.asmx/KeywordSearch? \\
QueryString=Flagstaff\&QueryClass=XML\&MaxHits=10

As you will see in Section ??, the search client needs to filter results returned from
the lookup web service since the lookup service returns results with partial matches
of search terms. I prefer to get only results that contain all search terms.

The following sections contain implementations of a SPARQL client and a free text
search lookup client.

DBpedia is a mostly automatic extraction of RDF data from Wikipedia using the
metadata in Wikipedia articles. You have two alternatives for using DBpedia in your
own applications: using the public DBpedia SPARQL endpoint or downloading all
or part of the DBpedia RDF data and loading it into your own RDF data store (e.g.,
AllegroGraph or Sesame).

The public DBpedia SPARQL endpoint URI is http://dbpedia.org/sparql. For the
purpose of the examples in this book we will simply use the public SPARQL endpoint
but for serious applications I suggest that you run your own endpoint.

14.4. Using the AllegroGraph SPARQL Client
Library to access DBpedia

The AllegroGraph SPARQL Client library makes it very simple to use the public
DBPedia web service. I have an example in dbpedia/test.lisp that shows how to run a
sample query:2

markws-macbook:lisp_practical_semantic_web markw$ cd dbpedia/
markws-macbook:dbpedia markw$ lisp
CL-USER(1): :ld test
CL-USER(2): (sparql.client::run-sparql-remote

"http://dbpedia.org/sparql" "
PREFIX dbpedia: <http://dbpedia.org/ontology/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
SELECT ?person {

?person
dbpedia:birthPlace
<http://dbpedia.org/resource/Boston> .

}
LIMIT 6" :results-format :alists)

2I had to edit this output to fit the page width.

99

14. Common Lisp Client Library for DBpedia

(((|?person| .
!<http://dbpedia.org/resource/Benjamin_Franklin>))

((|?person| .
!<http://dbpedia.org/resource/Cotton_Mather>))

((|?person| .
!<http://dbpedia.org/resource/James_Spader>))

((|?person| .
!<http://dbpedia.org/resource/Christa_McAuliffe>))

((|?person| .
!<http://dbpedia.org/resource/Gordon_K_MacLeod>))

((|?person| .
!<http://dbpedia.org/resource/Edgar_Allan_Poe>)))

:SELECT
#(|?person|)

14.5. DBpedia Wrapup

DBPedia is a great information resource and the AllegroGraph SPARQL client library
makes it easy to make queries and use the results in Lisp applications. I will not use
DBPedia in any further examples in this book but I wanted to show you how to use
DBpedia in your Lisp applications.

100

15. Library for GeoNames

GeoNames (http://www.geonames.org/) is a geographic information database. The
raw data is available under a Creative Commons Attribution license. There is a free
web service and a commercial web service. For production environments you will
want to use the commercial service but for development purposes and for the exam-
ples for this book I use the free service1.

15.1. Using the cl-geonames Library

We will use the Common Lisp GeoNames client by Nicolas Lamirault2 in this chapter.
I installed cl-geonames and all dependencies3 in the utils directory for the examples
in in this book.

The file in geonames/test.lisp contains an example of loading and running a few cl-
geonames examples:

mark:lisp_practical_semantic_web markw$ cd geonames/
mark:geonames markw$ alisp
CL-USER(1): :ld test
CL-USER(2): (cl-geonames:geo-country-info :country ’("US" "FR"))
(:|geonames|
(:|country| (:|countryCode| "FR") (:|countryName| "France")
(:|isoNumeric| "250") (:|isoAlpha3| "FRA") (:|fipsCode| "FR")
(:|continent| "EU") (:|capital| "Paris") (:|areaInSqKm| "547030.0")
(:|population| "64768389") ...)

(:|country| (:|countryCode| "US") (:|countryName| "United States")
(:|isoNumeric| "840") (:|isoAlpha3| "USA") (:|fipsCode| "US")
(:|continent| "NA") (:|capital| "Washington")
(:|areaInSqKm| "9629091.0") (:|population| "310232863") ...))

1The geonames.org web service is limited to 2000 queries per hour from any single IP address. Com-
mercial support is available, or, with some effort, you can also run GeoNames on your own server with
some effort. There are, for example, a few open source Ruby on Rails projects that use the Geonames
data files and provide a web service interface.

2http://code.google.com/p/cl-geonames/
3Drakma, s-xml, cl-json, chunga, cl-base64, flexi-streams, puri, split-sequence, trivial-gray-streams,

usocket

101

15. Library for GeoNames

CL-USER(3): (cl-geonames::geo-country-code "42.21" "-71.5")
(:|geonames|
(:|country| (:|countryCode| "US") (:|countryName| "United States")
(:|distance| "0.0")))

CL-USER(4): (cl-geonames::geo-elevation-srtm3 "42.21" "-71.5")
"122"
CL-USER(5): (cl-geonames::geo-country-subdivision "42.21" "-71.5")
(:|geonames|
(:|countrySubdivision| (:|countryCode| "US")
(:|countryName| "United States") (:|adminCode1| "MA")
(:|adminName1| "Massachusetts") ((:|code| :|type| "FIPS10-4") "25")
((:|code| :|type| "ISO3166-2") "MA") (:|distance| "0.0")))

CL-USER(6): (cl-geonames::geo-find-nearby-place-name "42.21" "-71.5" :radius 5)
(:|geonames|
(:|geoname| (:|toponymName| "Hayden Row") (:|name| "Hayden Row")
(:|lat| "42.20426") (:|lng| "-71.51062") (:|geonameId| "4939154")
(:|countryCode| "US") (:|countryName| "United States") (:|fcl| "P")
(:|fcode| "PPL") ...)
(:|geoname| (:|toponymName| "Hopkinton") (:|name| "Hopkinton")
(:|lat| "42.22358") (:|lng| "-71.52282") (:|geonameId| "7257691")
(:|countryCode| "US") (:|countryName| "United States") (:|fcl| "P")
(:|fcode| "PPL") ...)
(:|geoname| (:|toponymName| "Hopkinton") (:|name| "Hopkinton")
(:|lat| "42.22871") (:|lng| "-71.52256") (:|geonameId| "4939881")
(:|countryCode| "US") (:|countryName| "United States") (:|fcl| "P")
(:|fcode| "PPL") ...)
(:|geoname| (:|toponymName| "Camp Bob White")
(:|name| "Camp Bob White") (:|lat| "42.22648") (:|lng| "-71.4684")
(:|geonameId| "4932024") (:|countryCode| "US")
(:|countryName| "United States") (:|fcl| "P") (:|fcode| "PPL") ...)
(:|geoname| (:|toponymName| "North Milford") (:|name| "North Milford")
(:|lat| "42.18343") (:|lng| "-71.53784") (:|geonameId| "4945678")
(:|countryCode| "US") (:|countryName| "United States") (:|fcl| "P")
(:|fcode| "PPL") ...))

CL-USER(7): (cl-geonames::geo-search "Sedona" "Sedona" "Sedona" :country ’("US") :max-rows 2)
((:|geonames| :|style| "MEDIUM") (:|totalResultsCount| "1")
(:|geoname| (:|toponymName| "Sedona") (:|name| "Sedona")
(:|lat| "34.86974") (:|lng| "-111.76099") (:|geonameId| "5313667")
(:|countryCode| "US") (:|countryName| "United States") (:|fcl| "P")
(:|fcode| "PPL")))

102

15.2. Geonames Wrapup

15.2. Geonames Wrapup

We will not use Geonames in any further examples in this book but I wanted to show
you how to load and use cl-geonames since it is a great resource when you are dealing
with data for countries, cities, etc. The Freebase database also has geographic data.

103

Part IV.

Example Semantic Web
Application

105

16. Semantic Web Portal Back
End Services

The web portal application developed in this chapter and in Chapter 17 is meant
to show you several useful techniques: how to use an RDF data store instead of a
relational database, how to organize complex information as RDF data, and how to
write a high performance web application using Common Lisp and the open source
Portable Allegroserve library1.

In this chapter I will first list all of the ”back end” functionality that the web UI
developed in Chapter 17 will need. Then we will implement this functionality in a
single file web app/backend.lisp. The required functionality is:

1. Read initial RDF data from a file init.nt that contains a few login accounts and
the port number that the web application will use.

2. Check for valid user login.

3. Utilities for entering new ”documents” into the system: perform NLP semantic
analysis, save semantic tags, entities, input text in AllegroServe.

4. Search wrapper: given search terms, return matching document IDs.

5. Given a document ID, return all information about the document.

I am going to use my own KnowledgeBooks NLP library in this chapter but a good
exercise for you would be to make an alternative version that uses the client library
for Open Calais that I wrote for Chapter 11.

After backend.lisp is written then it will be fairly easy to write the web application
UI in Chapter 17.

1The part of this example using AllegroGraph is specific to Franz Lisp and AllegroGraph but what you
will learn in Chapter 17 will work well with other Common Lisp implementations like SBCL.

107

16. Semantic Web Portal Back End Services

16.1. Implementing the Back End APIs

This pedantic example web application substitutes the use of AllegroGraph instead
of a relational database for all data storage requirements. A real application would
probably use a relational database to store user information and AllegroGraph to store
semantic data.

The file web app/backend.lisp contains the implementation of the back end APIs and
you should open this file in a text editor while you read through this section because I
will only show you as few code snippets in the book text. I start by loading my NLP
library and the AllegroGraph library and performing some AllegroGraph initializa-
tion as seen in earlier book examples:

(push "../knowledgebooks_nlp/" asdf:*central-registry*)
(asdf:operate ’asdf:load-op :kbnlp)

(eval-when (compile load eval)
(require :aserve)
(require :agraph))

Here I loaded my NLP library, the open source portable AllegroServe library, and
the embedded AllegroGraph library. The following code snippet performs the same
AllegroGraph setup that we have already seen and loads the application parameters
from an N-Triple RDF file into our local RDF data store using the file path /tmp/web-
portal rdf:

(defpackage :user (:use :net.aserve.client :kbnlp))
(in-package :user)

(db.agraph.user::enable-!-reader)

(db.agraph.user::create-triple-store
"/tmp/webportal_rdf")

(db.agraph.user::register-namespace
"kb" "http://knowledgebooks.com/rdfs#")

(db.agraph.user::register-freetext-predicate
!kb:docTitle)

(db.agraph.user::register-freetext-predicate
!kb:docText)

(db.agraph.user::load-ntriples #p"init.nt")

The most interesting code in backend.lisp is the function for adding a new document:

108

16.1. Implementing the Back End APIs

(defun add-document (doc-uri doc-title doc-text)
(let* ((txt-obj

(kbnlp:make-text-object doc-text
:title doc-title
:url doc-uri))

(resource (db.agraph.user::resource doc-uri)))
(db.agraph.user::add-triple resource

!rdf:type !kb:document)
(db.agraph.user::add-triple resource

!kb:docTitle
(db.agraph.user::literal

doc-title))
(db.agraph.user::add-triple resource

!kb:docText
(db.agraph.user::literal

doc-text))
(dolist (human-name (kbnlp::text-human-names txt-obj))

(pprint human-name)
(db.agraph.user::add-triple resource

!kb:docPersonEntity
(db.agraph.user::literal

human-name)))
(dolist (place-name (kbnlp::text-place-names txt-obj))

(pprint place-name)
(db.agraph.user::add-triple resource

!kb:docPlaceEntity
(db.agraph.user::literal

place-name)))
(dolist (tag (kbnlp::text-category-tags txt-obj))

(pprint tag)
(db.agraph.user::add-triple

resource !kb:docTag
(db.agraph.user::literal

(format nil "˜A/˜A" (car tag) (cadr tag)))))))

Here I used my NLP library but as an exercise, you could rewrite this using the Open
Calais client library I provided in Chapter 11. It can be useful having a local entity
extraction library so applications do not need access to the Internet.2

The function doc-search is a simple wrapper for using the AllegroGraph text search
APIs:

2As I write this chapter in October 2010, I am on a ship in the Pacific Ocean with a poor Internet connec-
tion.

109

16. Semantic Web Portal Back End Services

(defun doc-search (search-term-string)
"return a list of matching doc IDs"
(db.agraph.user::freetext-get-ids search-term-string))

Search results are retuned as a list of document IDs and the following function get-
doc-info can be used to reconstruct a document object from the RDF triples contain-
ing original data and semantic data for a document:

(defun get-doc-info (doc-id)
(let* ((parts

(db.agraph.user::get-triple-by-id doc-id))
(subject (db.agraph.user::subject parts))
(predicate (db.agraph.user::predicate parts))
(object (db.agraph.user::object parts)))

(mapcar
#’(lambda (obj)

(list
(db.agraph.user::part->concise

(db.agraph.user::subject obj))
(db.agraph.user::part->concise

(db.agraph.user::predicate obj))
(db.agraph.user::part->terse

(db.agraph.user::object obj))))
(db.agraph.user::get-triples-list :s subject))))

I don’t list them here, but the file backend.lisp also contains utility functions print-
all-docs and delete-all-docs that you might find useful if you interactively experiment
with the code in this chapter.

16.2. Unit Testing the Backend Code

I provide a few unit tests in the file utils/lisp-unit.lisp to test document creation and
storage in AllegrGraph and test login functionality:

(load "../utils/lisp-unit.lisp")
(use-package :lisp-unit)
(load "backend.lisp")

(lisp-unit:define-test "create-doc-test1"
(add-document "file:///test1.doc" "test title"

"John Smith went to Mexico")

110

16.2. Unit Testing the Backend Code

(let ((person-list (db.agraph.user::get-triples-list
:p !kb:docPersonEntity))

(place-list (db.agraph.user::get-triples-list
:p !kb:docPlaceEntity)))

(lisp-unit:assert-equal
(db.agraph.user::part->string
(db.agraph.user::object (car person-list)))
"\"John Smith\"")

(lisp-unit:assert-equal
(db.agraph.user::part->string
(db.agraph.user::object (car place-list)))
"\"Mexico\"")))

(lisp-unit:define-test "print-triples"
(print-all-docs)
(lisp-unit:assert-equal t t))

(lisp-unit:define-test "good-login"
(lisp-unit:assert-equal t

(valid-login? "demo" "demo")))

(lisp-unit:define-test "bad-login"
(lisp-unit:assert-equal nil

(valid-login? "demo" "demo2")))

(run-tests)

(db.agraph.user::delete-triples :o !kb:document)
(db.agraph.user::delete-triples :p !kb:docText)
(db.agraph.user::delete-triples :p !kb:docTitle)
(db.agraph.user::delete-triples :p !kb:docPersonEntity)
(db.agraph.user::delete-triples :p !kb:docPlaceEntity)
(db.agraph.user::delete-triples :p !kb:docTag)
(db.agraph.user::delete-triples :p !kb:doc)

The following output shows the test results:

bad-login: 1 assertions passed, 0 failed.
create-doc-test1: 2 assertions passed, 0 failed.
checking login: demo demo
good-login: 1 assertions passed, 0 failed.
print-triples: 1 assertions passed, 0 failed.
TOTAL: 5 assertions passed, 0 failed, 0 execution errors.

111

16. Semantic Web Portal Back End Services

.

16.3. Backend Wrapup

I hope that this short chapter served as a good introduction to using Common Lisp to
build web applications and for using AllegroGraph. When I build web applications3

I like to start by implementing and testing the ”back end” server side processing as I
have done in this chapter. In the next chapter I develop the ”front end” for a simple
web application that builds on the code in this chapter.

3In Java, Ruby on Rails, or in Lisp

112

17. Semantic Web Portal User
Interface

I implemented the backend functionality for a semantic web information portal in
Chapter 16 and I will use the open source Portable AllegroServe library for devel-
oping web applications in Common Lisp and also the open source Dojo Javascript
library in this chapter to write a web interface.

I have used the combination of AllegroServe and Dojo on two customer projects in
the last four years and it is a ”comfortable” development environment.1

17.1. Portable AllegroServe

Portable AllegroServe is an open source project that runs under most Common Lisp
implementations. It is bundled with Franz Lisp so you can just require it:

(require :aserve)
(require :webactions)

The second library loaded in tis code snippet is WebActions that is an open source
framework for handling user sessions and other web application ”boilerplate.” You
can find full documentation here opensource.franz.com/aserve/webactions.html.
Please read through the introduction to the WebActions documentation on the web.
WebActions uses something similar to Java Server Pages (JSP): Common Lisp Server
Pages (CLP). CLP files are HTML with special tags for calling out to Lisp code.

17.2. Layout of CLP files for Web Application

You can find the CLP files for the example application in the directory web app/web:

1. about.clp - an about web page for this application

1However, Ruby on Rails is still my preferred web application framework.

113

17. Semantic Web Portal User Interface

Figure 17.1.: Example Semantic Web Application Login Page

2. browser.clp - this is the page for supporting search and content browsing

3. footer.clp - this is a page fragment that is included at the bottom of most web
pages for this application

4. header.clp - this is a page fragment that is included at the top of most web pages
for this application

5. left bar.clp - this page fragment implements the left hand side of the page nav-
igation menu

6. login.clp - contains fields for a user to enter account name and password

7. upload.clp - contains an HTML form for specifying a local file to upload to the
web application

Figure 17.1 shows the login page.

17.3. Common Lisp Code for Web Application

We listed the CLP template files in the last section and hopefully you have looked
at the online documentation. These template files contained some embedded tags for
calling out to Lisp code that is found in the file webapp.lisp. This Lisp source file

114

17.3. Common Lisp Code for Web Application

also contains all other code required for the web application. I am going to assume
that you open the file webapp.lisp in your favorite text editor and read through it;
here I will only list and discuss bits of code that are either non-intuitive or especially
interesting. I start by requiring libraries and loading my own code:23

(eval-when (compile load eval)
(require :aserve)
(require :webactions)
(load "backend.lisp")
(load "../utils/file-utils.lisp"))

(defpackage :user (:use :net.aserve :net.html.generator))
(in-package :user)

The following code snippet registers WebActions controller functions with HTTP
GTE and POST actions:

(webaction-project "dojotest"
:destination "web/"
:index "login"
:map
’(("menu" action-check-login)

("menu" "menu.clp")
("browser" "browser.clp")
("search" "/do-search")
("admin" "/upload.clp")
("about" "/about.clp")
("wiki" "/wiki.clp")
("upload" "/upload.clp")
;;("upload" "/do-upload" "/do-upload" (:redirect t))
("gotlogin" action-got-login)
("login" "login.clp")))

The login.clp file contains an HTML form for the user’s account and password:4

<form id="myForm2" action="gotlogin" method="post">
User name:

<input type="text" name="username" value="demo" />

2I am loading the source files for my own utilities so they will not be natively compiled when using Franz
Lisp. Other Common Lisp implementations like SBCL will compile code that is loaded from source.

3Please note that the code snippets shown in this section are not in the same order as they appear in the
source file

4Formatting HTML is not shown.

115

17. Semantic Web Portal User Interface

Figure 17.2.: Example File Upload Page

Password:
<input type="password" name="password" value="demo"/>

</form>

The action gotlogin checks to see if there is user data in the current request:

(defun action-got-login (req ent)
(let ((session (websession-from-req req)))

(let ((user (cdr (assoc "username"
(net.aserve:request-query req)
:test #’equal)))

(passwd (cdr (assoc "password"
(net.aserve:request-query req)
:test #’equal))))

(if* (and user passwd (valid-login? user passwd))
then ; already logged in
"browser" ; just go to the real home
else ; must login
"login"))))

Figure 17.2 shows the login page.

116

17.3. Common Lisp Code for Web Application

The WebActions controller function that handles search requests on the browser page
uses the utilities in the file backend.lisp that I discussed in Chapter 16:

(defun do-search (req ent)
(net.aserve:with-http-response (req ent)

(net.aserve:with-http-body (req ent)
(let ((test-input

(cdr (assoc "input_test_form_text"
(net.aserve:request-query req)

:test #’equal))))
(princ
(format nil
"AJAX: ˜A <a href=\"/search\"

target=\"new\">click here"
test-input)

net.html.generator:*html-stream*)))))

Handling file uploads is a bit tricky; I copied the code from the functions fetch-
multipart-sequence and process-upload-form from the AllegroServe and WebAc-
tions documentations, adding new functionality to process-upload-form for process-
ing the text of uploaded files and creating RDF triples in our local data store.

The last code snippet from file webapp.lisp that we will look at is the code for showing
search results on the browser page:

(def-clp-function search_results (req ent args body)
(let ((session (websession-from-req req))

(test-input (cdr (assoc "input_test_form_text"
(net.aserve:request-query req)

:test #’equal))))
(push test-input (websession-variable session "history"))
(net.html.generator:html
(:princ
(format nil "Search results: ˜A" test-input)))

(if test-input
(dolist (doc-id (doc-search test-input))

(princ
(format nil

"<pre>˜A</pre>˜%" (get-doc-info doc-id))
net.html.generator:*html-stream*)))))

Figure 17.3 shows the login page.

117

17. Semantic Web Portal User Interface

Figure 17.3.: Example Application Search Page

17.4. Web Application Wrap Up

There has been a lot of buzz in the industry about high level frameworks like Ruby
on Rails and Django but relatively about Common Lisp frameworks like Portable
AllegroServe and WebActions.5 This is probably, quite frankly, because Common
Lisp is not nearly as widely used as Ruby and Python. I am not even mentioning the
rich ecology of Java server side frameworks - there are too many to mention.

That said, if you enjoy developing in Common Lisp, I hope that the brief introduction
and example code in this chapter and in Chapter 16 will get you started using Lisp
for the full stack of web application development.

I urge you to experiment with RDF for storing data. There is a lot of ”buzz” right
now for so-called NoSQL databases like MongoDB, CouchDB, and Cassandra. RDF
data stores predate these newer NoSQL data stores and offer many implementations
to choose from.6 Google, Yahoo, and other major web players are starting to add
metadata to HTML web pages. When this metadata is in RDFa format it can be
easily stored for reuse in an RDF data store. Other types of tags like microformats
can also be converted to RDF.

5As well as other high quality frameworks like Edi Weitz’s Hunchentoot application server.
6For example, AllegroGraph, Sesame, Redland, Jena, 4store, the Talis Platform, and Virtuoso.

118

Index

DBpedia, 95
dereferenceable URI, 73
dereferenceable URIs, 27, 31, 89
Descriptive Logic, 35

example RDF data, 41

FOAF, 36
Freebase, 89

GeoNames web services, 101
gFacet Browser, 97

Linked Data, 27, 73
lookup.dbpedia.org Web Service, 97

N-triple, 28
N-Triple RDF serialization, 26
N3, 29, 41
N3 RDF serialization, 26

OWL, 35

QNames, 33

RDF (Resource Description Framework),
25

RDF graph, 26
RDF properties, 31
RDF statement, 26
rdf:property, 35
RDFS, 25
RDFS (RDF Schema), 33
RDFS++, 34
rdfs:domain, 35
rdfs:subClassOf, 35
rdfs:subPropertyOf, 35

Snorql, 95
SPARQL, 41, 44
SPARQL endpoint, 26

Tim Berners-Lee, 73

URIs (Uniform Resource Identifiers),
27

119

